Activity of Retinoic Acid Receptor-alpha Is Directly Regulated at Its Protein Kinase A Sites in Response to Follicle-Stimulating Hormone Signaling

Author:

Santos Nadine C.1,Kim Kwan Hee1

Affiliation:

1. School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, Washington 99164

Abstract

Retinoic acid receptor-α (RARA) is crucial for germ cell development in the testis, as shown by the degenerated testis in Rara gene knockout mice, which are sterile. Similarly, FSH is known to regulate Sertoli cell proliferation and differentiation, indirectly controlling the quantity of the spermatogenic output. Interestingly, FSH inhibited, via activation of FSH receptor, cAMP, and protein kinase A (PKA), the nuclear localization and transcriptional activity of RARA. Given that retinoic acid, the ligand for RARA, is known to regulate cell proliferation and differentiation, we investigated whether FSH regulates RARA by a direct posttranslational phosphorylation mechanism. Mutagenesis of serine 219 (S219) and S369 at the PKA sites on RARA to either double alanines or double glutamic acids showed that both PKA sites are important for RARA activity. The negative charges at the PKA sites, whether they are from glutamic acids or phosphorylation of serines, decreased the nuclear localization of RARA, heterodimerization with retinoid X receptor-α, and the transcriptional activity of the receptor. On the other hand, the double-alanine mutant that cannot be phosphorylated at the 219 and 369 amino acid positions did not respond to cAMP and PKA activation. Wild-type and double-mutant RARA interacted with PKA, but only in the presence of cAMP or FSH. These results together suggest that FSH may regulate cell proliferation and differentiation of Sertoli cells, at least partially, by directly affecting the PKA sites of RARA and controlling the transcriptional function of the receptor.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3