Dissociation between Rat Hippocampal CA1 and Dentate Gyrus Cells in Their Response to Corticosterone: Effects on Calcium Channel Protein and Current

Author:

van Gemert Neeltje G.1,Carvalho Diana M. M.1,Karst Henk1,van der Laan Siem2,Zhang Mingxu3,Meijer Onno C.2,Hell Johannes W.3,Joëls Marian14

Affiliation:

1. Swammerdam Institute for Life Sciences (N.G.G., D.M.M.C., H.K., M.J.), University of Amsterdam, 1098 XH Amsterdam, The Netherlands

2. Division of Medical Pharmacology (S.v.d.L., O.C.M.), Leiden/Amsterdam Center for Drug Research and Leiden University Medical Center, 2300 RC Leiden, The Netherlands

3. Department of Pharmacology (M.Z., J.W.H.), University of Iowa, Iowa City, Iowa 52242

4. Department of Neuroscience and Pharmacology (M.J.), University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands

Abstract

Abstract Stress and corticosterone affect, via glucocorticoid receptors, cellular physiology in the rodent brain. A well-documented example concerns corticosteroid effects on high-voltage activated (L type) calcium currents in the hippocampal CA1 area. We tested whether corticosterone also affects calcium currents in another hippocampal area that highly expresses glucocorticoid receptors, i.e. the dentate gyrus (DG). Remarkably, corticosterone (100 nm, given for 20 min, 1–4.5 hr before recording) did not change high-voltage activated calcium currents in the DG, whereas currents in the CA1 area of the same rats were increased. Follow-up studies revealed that no apparent dissociation between the two areas was observed with respect to transcriptional regulation of calcium channel subunits; thus, in both areas corticosterone increased mRNA levels of the calcium channel-β4 but not the (α) Cav1.2 subunit. At the protein level, however, β4 and Cav1.2 levels were significantly up-regulated by corticosterone in the CA1 but not the DG area. These data suggest that stress-induced elevations in the level of corticosterone result in a regionally differentiated physiological response that is not simply determined by the glucocorticoid receptor distribution and that the observed regional differentiation may be caused by a gene involved in the translational machinery or in mechanisms regulating mRNA or protein stability.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3