Estrogen-Dependent Transactivation of Amphioxus Steroid Hormone Receptor via Both Estrogen and Androgen Response Elements

Author:

Katsu Yoshinao12,Kubokawa Kaoru3,Urushitani Hiroshi1,Iguchi Taisen12

Affiliation:

1. Okazaki Institute for Integrative Bioscience (Y.K., H.U., T.I.), School of Life Science, Graduate University for Advanced Studies, Okazaki 444-8787, Japan

2. National Institute for Basic Biology, National Institutes of Natural Sciences, and Department of Basic Biology (Y.K., T.I.), School of Life Science, Graduate University for Advanced Studies, Okazaki 444-8787, Japan

3. Center for Advanced Marine Sciences (K.K.), Ocean Research Institute, University of Tokyo, Nakano, Tokyo 164-8639, Japan

Abstract

Estrogens are necessary for ovarian differentiation during critical developmental windows in most vertebrates and promote the growth and differentiation of the adult female reproductive system. Estrogen actions are largely mediated through the estrogen receptors (ERs), which are ligand-activated transcription factors. To understand the molecular evolution of sex steroid hormone receptors, we isolated cDNAs encoding two steroid receptors from Japanese amphioxus, Branchiostoma belcheri: an ER ortholog and a ketosteroid receptor (SR) ortholog. Reporter gene assays revealed that the SR ortholog has molecular functions similar to those of the vertebrate ER. Surprisingly, the ER ortholog is an estrogen-insensitive repressor of SR-mediated transcription. Furthermore, we found that the SR ortholog can bind to both estrogen-responsive elements (EREs) and androgen-responsive elements (AREs) and mediates transcriptional activation by estrogens through both types of elements. Our findings suggest that the ancestral SR, but not ER, could bind estrone and induce the ERE- and ARE-dependent transactivation and that it gained the ability to be regulated by ketosteroid and recognize ARE specifically before jawless vertebrates split. These results highlight the importance of comparative experimental approaches for the evolutionary study of endocrine systems.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3