Gonadotropin-Releasing Hormone Neuroterminals and Their Microenvironment in the Median Eminence: Effects of Aging and Estradiol Treatment

Author:

Yin Weiling1,Wu Di1,Noel Megan L.1,Gore Andrea C.123

Affiliation:

1. Division of Pharmacology and Toxicology (W.Y., D.W., M.L.N., A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712

2. Institute for Neuroscience (A.C.G.), The University of Texas at Austin, Austin, Texas 78712

3. Institute for Cell and Molecular Biology (A.C.G.), The University of Texas at Austin, Austin, Texas 78712

Abstract

AbstractThe GnRH decapeptide controls reproductive function through its release from neuroendocrine terminals in the median eminence, a site where there is a convergence of numerous nerve terminals and glial cells. Previous work showed dynamic changes in the GnRH-glial-capillary network in the median eminence under different physiological conditions. Because aging in rats is associated with a diminution of GnRH release and responsiveness to estradiol feedback, we examined effects of age and estradiol treatment on these anatomical interactions. Rats were ovariectomized at young (4 months), middle-aged (11 months), or old (22–23 months) ages, allowed 4 wk to recover, and then treated with vehicle or estradiol for 72 h followed by perfusion. Immunofluorescence of GnRH was measured, and immunogold electron microscopic analyses were performed to study the ultrastructural properties of GnRH neuroterminals and their microenvironment. Although the GnRH immunofluorescent signal showed no significant changes with age and estradiol treatment, we found that the median eminence underwent both qualitative and quantitative structural changes with age, including a disorganization of cytoarchitecture with aging and a decrease in the apposition of GnRH neuroterminals to glia with age and estradiol treatment. Thus, although GnRH neurons can continue to synthesize and transport peptide, changes in the GnRH neuroterminal-glial-capillary machinery occur during reproductive senescence in a manner consistent with a disconnection of these elements and a potential dysregulation of GnRH neurosecretion.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3