Metalloproteinase-Dependent Shedding of Low-Density Lipoprotein Receptor-Related Protein-1 Ectodomain Decreases Endocytic Clearance of Endometrial Matrix Metalloproteinase-2 and -9 at Menstruation

Author:

Selvais Charlotte1,Gaide Chevronnay Héloïse P.1,Lemoine Pascale1,Dedieu Stéphane2,Henriet Patrick1,Courtoy Pierre J.1,Marbaix Etienne13,Emonard Hervé2

Affiliation:

1. Cell Biology Unit (C.S., H.P.G.C., P.L., P.H., P.J.C., E.M.), Université catholique de Louvain, B-1200 Brussels, Belgium

2. Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6237, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC) (S.D., H.E.), University of Reims Champagne-Ardenne, F-51100 Reims, France

3. de Duve Institute, and Department of Pathology (E.M.), Université catholique de Louvain, B-1200 Brussels, Belgium

Abstract

Cyclic elimination of the endometrium functional layer through menstrual bleeding results from intense tissue breakdown by proteolytic enzymes, mainly members of the matrix metalloproteinase (MMP) family. In contrast to menstrual-restricted MMPs, e.g. interstitial collagenase (MMP-1), gelatinases A (MMP-2) and B (MMP-9) mRNAs are abundant throughout the cycle without detectable tissue degradation at proliferative and secretory phases, implying a tight posttranslational control of both gelatinases. This paper addresses the role of low-density lipoprotein receptor-related protein (LRP)-1 in the endocytic clearance of endometrial gelatinases. LRP-1 mRNA and protein were studied using RT-PCR, Western blotting, and immunolabeling. Posttranslational control of LRP-1 was analyzed in explant culture. The receptor-associated protein (RAP), used as LRP antagonist, strongly increased (pro)gelatinase accumulation in medium conditioned by endometrial explants, suggesting a role for LRP-1 in their clearance. Although LRP-1 mRNA remained constant throughout the cycle, the protein ectodomain vanished at menses. LRP-1 immunolabeling selectively disappeared in areas of extracellular matrix breakdown in menstrual samples. It also disappeared from explants cultured without estrogen and progesterone (EP) due to ectodomain shedding in the medium. The shedding was inhibited by metalloproteinase inhibitors, including a disintegrin and metalloproteinase (ADAM) inhibitor, and by tissue inhibitors of MMPs (TIMP)-3 and -2, but barely by TIMP-1, pointing to ADAM-12 as the putative sheddase. In good agreement, ADAM-12 mRNA expression was repressed by EP. In conclusion, the efficient LRP-1-mediated clearance of gelatinase activity in nonbleeding endometrium is abrogated upon EP withdrawal, due to shedding of LRP-1 ectodomain by a metalloproteinase, presumably ADAM-12, itself regulated by EP.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3