Hypothalamic Insulin-Like Growth Factor-I Receptors Are Necessary for Hormone-Dependent Luteinizing Hormone Surges: Implications for Female Reproductive Aging

Author:

Todd Brigitte J.1,Merhi Zaher O.1,Shu Jun12,Etgen Anne M.1,Neal-Perry Genevieve S.12

Affiliation:

1. Dominick P. Purpura Department of Neuroscience (B.J.T., Z.O.M., J.S., A.M.E., G.S.N.-P.), Albert Einstein College of Medicine, Bronx, New York 10461

2. Department of Obstetrics and Gynecology (J.S., G.S.N.-P.), Albert Einstein College of Medicine, Bronx, New York 10461

Abstract

Brain IGF-I receptors are required for maintenance of estrous cycles in young adult female rats. Circulating and hypothalamic IGF-I levels decrease with aging, suggesting a role for IGF-I in the onset of reproductive senescence. Therefore, the present study investigated potential mechanisms of action of brain IGF-I receptors in the regulation of LH surges in young adult and middle-aged rats. We continuously infused IGF-I, the selective IGF-I receptor antagonist JB-1, or vehicle into the third ventricle of ovariectomized young adult and middle-aged female rats primed with estradiol and progesterone. Pharmacological blockade of IGF-I receptors attenuated and delayed the LH surge in young adult rats, reminiscent of the LH surge pattern that heralds the onset of reproductive senescence in middle-aged female rats. Infusion of IGF-I alone had no effect on the LH surge but reversed JB-1 attenuation of the surge in young females. In middle-aged rats, infusion of low doses of IGF-I partially restored LH surge amplitude, and infusion of JB-1 completely obliterated the surge. Intraventricular infusion of IGF-I or JB-1 did not modify pituitary sensitivity to exogenous GnRH or GnRH peptide content in the anterior or mediobasal hypothalamus in either young or middle-aged rats. These findings support the hypothesis that brain IGF-I receptor signaling is necessary for GnRH neuron activation under estrogen-positive feedback conditions and that decreased brain IGF-I signaling in middle-aged females contributes, in part, to LH surge dysfunction by disrupting estradiol-sensitive processes that affect GnRH neuron activation and/or GnRH release.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3