Affiliation:
1. Medical Department M (Endocrinology and Diabetes) and Medical Research Laboratories (C.H.G., J.S.C.), DK-8000 Aarhus C, Denmark;
2. Department of Clinical Chemistry (A.L.L.), Aarhus Kommunehospital, Aarhus University Hospital, DK-8000 Aarhus C, Denmark;
3. Department of Endocrinology (K.B.), Odense University Hospital, DK-5000 Odense C, Denmark;
4. Departments of Endocrinology and Metabolism (K.B., L.M.), DK-8000 Aarhus C, Denmark
5. Clinical Chemistry (L.H.), Aarhus Amtssygehus, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
Abstract
Most women with Turner syndrome (TS) have no gonadal activity and thus lack estrogen. Bone mineral density (BMD) is often reduced, leading to an increased risk of osteoporosis and fractures. However, growth retardation with reduced final height and other endocrine disturbances may compromise interpretation of skeletal measurements. The aim of the present study was to explore skeletal findings, bone metabolism, and calcium homeostasis in TS. Sixty women with TS (age, 37 ± 9 yr) and 181 normal age-matched female controls were studied. Bone area (A; square centimeters), bone mineral content (BMC; grams), area-adjusted BMD (aBMD; grams/square centimeter), and volumetric BMD (vBMD; grams/cubic centimeter) were measured at lumbar spine, femoral neck, and forearm using dual energy x-ray absorptiometry. Twenty-eight percent had osteopenia, and 23% had osteoporosis, according to World Health Organization criteria. At the lumbar spine, A, BMC, aBMD, and vBMD were reduced by 18, 27, 11, and 6%, respectively; at the femoral neck, A, BMC, and aBMD were reduced by 2, 10, and 8%, respectively, whereas the 9% reduction in vBMD was insignificant (P = 0.07); and in the forearm, A, BMC, and aBMD were reduced by 53, 55, and 9%, respectively. Bone markers indicated an enhanced bone resorption (21 and 23% increase in C-terminal and N-terminal cross-linking telopeptides of type I collagen/creatinine, respectively) with unchanged (osteocalcin, procollagen I N-terminal propeptide) or reduced (54% reduction in bone alkaline phosphatase) bone formation. Plasma levels of calcium and 25-hydroxyvitamin D (26%) were reduced, and PTH levels increased (74%) in TS. IGF-I (30%), IGF binding protein 3 (18%), testosterone (50%), and SHBG (40%) were reduced in TS.
In summary, A, BMC, and aBMD were found to be universally reduced in TS, whereas vBMD was slightly reduced in the spine. Increased resorption of bone was present, with normal or blunted bone formation, suggesting uncoupling or imbalance in bone remodeling. Skeletal changes may be induced by chromosome abnormalities or by secondary endocrine or metabolic changes related to a relative estrogen deficiency, testosterone deficiency, reduced IGF-I, low vitamin D status, and secondary hyperparathyroidism.
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献