Fluctuating Estrogen and Progesterone Receptor Expression in Brainstem Norepinephrine Neurons through the Rat Estrous Cycle*

Author:

Haywood Suzy A.1,Simonian Sharon X.1,van der Beek Eline M.12,Bicknell R. John1,Herbison Allan E.1

Affiliation:

1. Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge, United Kingdom CB2 4AT

2. the Human and Animal Physiology Group, Department of Animal Science, Wageningen Agricultural University (E.M.V.), Wageningen 6709, The Netherlands

Abstract

Abstract Norepinephrine (NE) neurons within the nucleus tractus solitarii (NTS; A2 neurons) and ventrolateral medulla (A1 neurons) represent gonadal steroid-dependent components of several neural networks regulating reproduction. Previous studies have shown that both A1 and A2 neurons express estrogen receptors (ERs). Using double labeling immunocytochemistry we report here that substantial numbers of NE neurons located within the NTS express progesterone receptor (PR) immunoreactivity, whereas few PRs are found in ventrolateral medulla. The evaluation of ERα and PR immunoreactivity in NE neurons through the estrous cycle revealed a fluctuating pattern of expression for both receptors within the NTS. The percentage of A2 neurons expressing PR immunoreactivity was low on metestrus and diestrus (3–7%), but increased significantly to approximately 24% on proestrous morning and remained at intermediate levels until estrus. The pattern of ERα immunoreactivity in A2 neurons was more variable, but a similar increment from 11% to 40% of NE neurons expressing ERα was found from diestrus to proestrus. Experiments in ovariectomized, estrogen-treated and estrogen-plus progesterone-treated rats revealed that PR immunoreactivity in A2 neurons was induced strongly by estrogen treatment, whereas progesterone had no significant effect. The numbers of ERα-positive NE neurons were not influenced by steroid treatment. These observations provide direct evidence for PRs in NE neurons of the brainstem and show that cyclical patterns of gonadal steroid receptor expression exist in A2, but not A1, neurons through the rat estrous cycle. The expression of PR in A2 neurons appears to be driven principally by circulating estrogen concentrations. The fluctuating levels of ERα and PR expression in these brainstem NE neurons may help generate cyclical patterns of biosynthetic and electrical activity within reproductive neural networks.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3