Posttranslational Processing of Progrowth Hormone-Releasing Hormone1

Author:

Nillni Eduardo A.1,Steinmetz Rosemary2,Pescovitz Ora Hirsch2

Affiliation:

1. Division of Endocrinology, Department of Medicine, Brown University School of Medicine, Rhode Island Hospital (E.A.N.), Providence, Rhode Island 02903

2. The Section of Pediatric Endocrinology and Diabetology, The Herman B. Wells Center for Pediatric Research, Departments of Pediatrics and Physiology, James Whitcomb Riley Hospital for Children, Indiana University (R.S., O.H.P.), Indianapolis, Indiana 46202

Abstract

Abstract The prepro-GH-releasing hormone (prepro-GHRH; 12.3 kDa) precursor, like other neuropeptide precursors, undergoes proteolytic cleavage to give rise to mature GHRH, which is the primary stimulatory regulator of pituitary GH secretion. In this study we present the first model of in vitro pro-GHRH processing. Using pulse-chase analysis, we demonstrate that at least five peptide forms in addition to GHRH are produced. The pro-GHRH (after removal of its signal peptide, 10.5 kDa) is first processed to an 8.8-kDa intermediate form that is cleaved to yield two products: the 5.2-kDa GHRH and GHRH-related peptide (GHRH-RP; 3.6 kDa). GHRH-RP is a recently described peptide derived from proteolytic processing of pro-GHRH that activates stem cell factor, a factor known to be essential for hemopoiesis, spermatogenesis, and melanocyte function. Further cleavage results in a 3.5-kDa GHRH and a 2.2-kDa product of GHRH-RP. Like GHRH, there is GHRH-RP immunostaining in hypothalamic neurons in the median eminence as detected by immunohistochemistry and immunoelectron microscopy. Based on deduced amino acid sequences of the pro-GHRH processing products, several peptides were synthesized and tested for their ability to stimulate the cAMP second messenger system. GHRH, GHRH-RP, and one of these peptides[ prepro-GHRH-(75–92)-NH2] all significantly stimulated the PKA pathway. This work delineates a new model of pro-GHRH processing and demonstrates that novel peptides derived from this processing may have biological action.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3