Growth Hormone and Dexamethasone Stimulate Lipolysis and Activate Adenylyl Cyclase in Rat Adipocytes by Selectively Shifting Giα2 to Lower Density Membrane Fractions*

Author:

Yip Rupert Guk-Chor1,Goodman H. Maurice1

Affiliation:

1. Department of Physiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655

Abstract

Abstract GH, in the presence of glucocorticoid, produces a delayed increase in lipolysis in rat adipose tissue, but the biochemical mechanisms that account for this action have not been established. Other lipolytic agents rapidly activate adenylyl cyclase (AC) and the resulting production of cAMP initiates a chain of reactions that culminates in the activation of hormone-sensitive lipase. We compared responses of segments of rat epididymal fat or isolated adipocytes to 30 ng/ml GH and 0.1 μg/ml dexamethasone (Dex) with 0.1 ng/ml isoproterenol (ISO), which evoked a similar increase in lipolysis. All measurements were made during the fourth hour after the addition of GH+Dex or immediately after the addition of ISO to cells or tissues that had been preincubated for 3 h without hormone. Although no significant increases in cAMP were discernible in homogenates of GH+Dex-treated tissues, RP-cAMPS (RP-adenosine 3′5′-phosphothioate), a competitive inhibitor of cAMP, was equally effective in decreasing lipolysis induced by GH+Dex or ISO. The proportion of PKA that was present in the active form was determined by measuring the incorporation of 32P from[γ -32P]ATP into kemptide in the absence and presence of saturating amounts of cAMP. GH+Dex and ISO produced similar increases in protein kinase A activity in tissue extracts. Treatment with GH+Dex did not change the total forskolin-stimulated AC present in either a crude membrane pellet sedimented at 16K × g or a less dense membrane pellet sedimented at 100K × g, but doubled the AC activity in the 16K pellet when assayed in the absence of forskolin. To evaluate possible effects on G proteins, pellets obtained from centrifugation of adipocyte homogenates at 16K × g and 100K × g were solubilized and subjected to PAGE and Western analysis. GH+Dex decreased Giα2 by 44% (P < 0.02) in the 16K pellets and increased it by 52% (P < 0.01) in the 100K pellets. Gsα in the 16K pellet was unaffected by GH+Dex and was decreased (P < 0.05) in the 100K pellet. Sucrose density fractionation of the 16K pellets revealed a similar GH+Dex-dependent shift of Giα2 to less dense fractions as determined by both Western analysis and[ 32P]NAD ribosylation catalyzed by pertussis toxin. No such changes were seen in the distribution of Gsα or 5′-nucleotidase. Colchicine (100 μm) blocked the GH+Dex-dependent shift of Giα2 from the 16K to the 100K pellet and blocked the lipolytic effects of GH+Dex, but not those of ISO. We conclude that by modifying the relationship between AC and Giα2, GH+Dex relieves some inhibition of cAMP production and consequently increases lipolysis.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference54 articles.

1. Growth hormone and metabolism;Goodman,1993

2. Growth hormone and lipolysis: a reevaluation.;Goodman;Endocrinology,1983

3. The lipolytic effects of mouse placental lactogen, mouse prolactin, and mouse growth hormone on adipose tissue from virgin and pregnant mice.;Fielder;Endocrinology,1987

4. Lipolytic activity of purified pituitary and bacterial derived growth hormone on chicken adipose tissue.;Campbell;Proc Soc Exp Biol Med,1985

5. Response of fat cells to growth hormone (GH): effect of long term treatment with recombinant human growth hormone in GH-deficient adults.;Harant;J Clin Endocrinol Metab,1994

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3