Developmental Expression and Regulation of Adrenocortical Cytochrome P4501B1 in the Rat*

Author:

Brake Paul B.1,Arai Maya2,As-Sanie Suzie2,Jefcoate Colin R.1,Widmaier Eric P.2

Affiliation:

1. Center for Environmental Toxicology and Department of Pharmacology, University of Wisconsin Medical School (P.B.B., C.R.J.), Madison, Wisconsin 53706

2. the Department of Biology, Boston University (M.A., S.A.-S., E.P.W.), Boston, Massachusetts 02215

Abstract

Abstract A 57-kDa protein whose expression in rat adrenocortical microsomes is increased after weaning has been identified as cytochrome P4501B1 (CYP1B1). Levels of CYP1B1 protein were moderately expressed in late gestation fetuses and on postnatal day 1 (pd1), but were nearly undetectable on pd6 and pd10. CYP1B1 expression initially increased in the late preweaning period (pd17–19) and again immediately postweaning (pd21–24). The temporal coincidence of CYP1B1 expression and weaning was not due to transition from suckling to solid food, as neonates that were prematurely weaned showed no increase in adrenal CYP1B1 compared with normally weaned littermates. The pattern of CYP1B1 expression paralleled changes in microsomal metabolism of 7,12-dimethylbenz[a]anthracene (DMBA), a marker of CYP1B1 activity. Twice daily injections of ACTH to rat pups (pd3–10) failed to significantly increase the expression of CYP1B1 in pd10 adrenals, although the injections weakly stimulated steroidogenesis. Adrenocortical cells from pd17 neonates and adult cells, when cultured for 3 days, responded similarly to ACTH induction, although neonates showed more than 4-fold less basal activity. It is concluded that rat adrenal CYP1B1 may be developmentally suppressed, and its expression is independent of diet or the presence of a dam. This suppression is retained in cell culture, but is not due to deficient ACTH signaling. These results may explain the reported resistance of neonatal rat adrenals to the toxic effects of polycyclic aromatic hydrocarbons, which are metabolized by CYP1B1 into mutagenic by-products.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3