Markers of Adipogenesis, but Not Inflammation, in Adipose Tissue Are Independently Related to Insulin Sensitivity

Author:

Matulewicz Natalia1,Stefanowicz Magdalena1,Nikołajuk Agnieszka2,Karczewska-Kupczewska Monika12

Affiliation:

1. Department of Metabolic Diseases, Medical University of Bialystok, Poland

2. Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland

Abstract

Abstract Context In obesity, adipose tissue (AT) undergoes dynamic remodeling, including an alternation in adipogenesis, AT-resident cell content, angiogenesis, and turnover of extracellular matrix (ECM) components. Studies of AT in humans have been carried out mostly in people with severe metabolic abnormalities, like type 2 diabetes or morbid obesity. Objective The purpose of this study was to investigate subcutaneous AT gene expression of markers of adipogenesis, ECM remodeling, and inflammation in young, healthy, overweight or obese subjects. Design The study group comprised 83 normal-weight, 48 overweight, and 19 obese subjects. Euglycemic hyperinsulinemic clamp, biopsy of subcutaneous AT, and isolation of peripheral blood mononuclear cells (PBMCs) were performed. Gene expression was measured with real-time polymerase chain reaction. Results Overweight/obese subjects had lower AT expression of markers of adipogenesis, insulin signaling, and angiogenesis; higher expression of markers of ECM remodeling; altered expression of genes of the nuclear factor-κ-B (NFκB), but not c-Jun NH2-terminal kinase, pathway; and higher expression of macrophage markers but not markers of other immune cells. In multiple regression analysis, the expression of CEBPA, ADIPOQ, IRS1, IRS2, SLC2A4, and MMP9 was associated with insulin sensitivity independently of body mass index. No differences were found in inflammatory-gene PBMC expression. Conclusion Overweight/obesity is associated with altered expression of genes of adipogenesis, insulin signaling, ECM remodeling, and inflammation. NFκB seems to be the earliest inflammatory pathway altered at the transcriptional level in AT. Macrophages seem to be the first immune cells to infiltrate AT. Adipogenesis and ECM remodeling are the initial processes in AT that are independently associated with insulin sensitivity.

Publisher

The Endocrine Society

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3