Early-Onset Obesity: Unrecognized First Evidence for GNAS Mutations and Methylation Changes

Author:

Grüters-Kieslich Annette12,Reyes Monica1,Sharma Amita3,Demirci Cem4,DeClue Terry J5,Lankes Erwin26,Tiosano Dov7,Schnabel Dirk26,Jüppner Harald13

Affiliation:

1. Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

2. Department of Pediatric Endocrinology and Diabetes, Charité-Universitätsmedizin, Berlin 10117, Germany

3. Pediatric Nephrology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114

4. Pediatric Endocrinology, Connecticut Children’s Medical Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030

5. Pediatric Endocrine Associates, Tampa, Florida 33647

6. Center for Chronically Sick Children, Charité-Universitätsmedizin, Berlin 10117, Germany

7. Division of Pediatric Endocrinology, Meyer Children's Hospital, Rambam Health Care Campus, Haifa 31096, Israel

Abstract

Abstract Context Early-onset obesity, characteristic for disorders affecting the leptin–melanocortin pathway, is also observed in pseudohypoparathyroidism type 1A (PHP1A), a disorder caused by maternal GNAS mutations that disrupt expression or function of the stimulatory G protein α-subunit (Gsα). Mutations and/or epigenetic abnormalities at the same genetic locus are also the cause of pseudohypoparathyroidism type 1B (PHP1B). However, although equivalent biochemical and radiographic findings can be encountered in these related disorders caused by GNAS abnormalities, they are considered distinct clinical entities. Objectives To further emphasize the overlapping features between both disorders, we report the cases of several children, initially brought to medical attention because of unexplained early-onset obesity, in whom PHP1B or PHP1A was eventually diagnosed. Patients and Methods Search for GNAS methylation changes or mutations in cohorts of patients with early-onset obesity. Results Severe obesity had been noted in five infants, with a later diagnosis of PHP1B due to STX16 deletions and/or abnormal GNAS methylation. These findings prompted analysis of 24 unselected obese patients, leading to the discovery of inherited STX16 deletions in 2 individuals. Similarly, impressive early weight gains were noted in five patients, who initially lacked additional Albright hereditary osteodystrophy features but in whom PHP1A due to GNAS mutations involving exons encoding Gsα was diagnosed. Conclusions Obesity during the first year of life can be the first clinical evidence for PHP1B, expanding the spectrum of phenotypic overlap between PHP1A and PHP1B. Importantly, GNAS methylation abnormalities escape detection by targeted or genome-wide sequencing strategies, raising the question of whether epigenetic GNAS analyses should be considered for unexplained obesity.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3