Transgenic Mice Overexpressing Des-Acyl Ghrelin Show Small Phenotype

Author:

Ariyasu Hiroyuki1,Takaya Kazuhiko2,Iwakura Hiroshi2,Hosoda Hiroshi2,Akamizu Takashi2,Arai Yuji3,Kangawa Kenji42,Nakao Kazuwa1

Affiliation:

1. Department of Medicine and Clinical Science (H.A., K.N.), Kyoto University Hospital, Kyoto 606-8507

2. Kyoto University Graduate School of Medicine, and Translational Research Center (K.T., H.I., H.H., T.A., K.K.), Kyoto University Hospital, Kyoto 606-8507

3. Departments of Bioscience (Y.A.), National Cardiovascular Center Research Institute, Osaka 565-8565, Japan

4. Biochemistry (K.K.), National Cardiovascular Center Research Institute, Osaka 565-8565, Japan

Abstract

Ghrelin, a 28-amino acid acylated peptide, displays strong GH-releasing activity in concert with GHRH. The fatty acid modification of ghrelin is essential for the actions, and des-acyl ghrelin, which lacks the modification, has been assumed to be devoid of biological effects. Some recent reports, however, indicate that des-acyl ghrelin has effects on cell proliferation and survival. In the present study, we generated two lines of transgenic mice bearing the preproghrelin gene under the control of chicken β-actin promoter. Transgenic mice overexpressed des-acyl ghrelin in a wide variety of tissues, and plasma des-acyl ghrelin levels reached 10- and 44-fold of those in control mice. They exhibited lower body weights and shorter nose-to-anus lengths, compared with control mice. The serum GH levels tended to be lower, and the serum IGF-I levels were significantly lower in both male and female transgenic mice than control mice. The responses of GH to administered GHRH were normal, whereas those to administered ghrelin were reduced, especially in female transgenic mice, compared with control mice. These data suggest that overexpressed des-acyl ghrelin may modulate the GH-IGF-I axis and result in small phenotype in transgenic mice.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3