Fate of Internalized Thyrotropin-Releasing Hormone Receptors Monitored with a Timer Fusion Protein

Author:

Cook Laurie B.1,Hinkle Patricia M.1

Affiliation:

1. Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642

Abstract

AbstractTrafficking of TRH receptors was studied in a stable HEK293 cell line expressing receptor fused to a Timer protein (TRHR-Timer) that spontaneously changes from green to red over 10 h. Cells expressing TRHR-Timer responded to TRH with an 11-fold increase in inositol phosphate formation, increased intracellular free calcium, and internalization of 75% of bound [3H][N3-methyl-His2]TRH within 10 min. After a 20-min exposure to TRH at 37 C, 75–80% of surface binding sites disappeared as receptors internalized. When TRH was removed and cells incubated in hormone-free medium, approximately 75% of [3H][N3-methyl-His2]TRH binding sites reappeared at the surface over the next 2 h with or without cycloheximide. Trafficking of TRHR-Timer was monitored microscopically after addition and withdrawal of TRH. In untreated cells, both new (green) and old (red) receptors were seen at the plasma membrane, and TRH caused rapid movement of young and old receptors into cytoplasmic vesicles. When TRH was withdrawn, some TRHR-Timer reappeared at the plasma membrane after several hours, but much of the internalized receptor remained intracellular in vesicles that condensed to larger structures in perinuclear regions deeper within the cell. Strikingly, receptors that moved to the plasma membrane were generally younger (more green) than those that underwent endocytosis. There was no change in the red to green ratio over the course of the experiment in cells exposed to vehicle. The results indicate that, after agonist-driven receptor internalization, the plasma membrane is replenished with younger receptors, arising either from an intracellular pool or preferential recycling of younger receptors.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3