Author:
Aikin Reid,Maysinger Dusica,Rosenberg Lawrence
Abstract
AbstractTherapeutic strategies aimed at the inhibition of specific cell death mechanisms may increase islet yield and improve cell viability and function after routine isolation. The aim of the current study was to explore the possibility of AKT-JNK cross-talk in islets after isolation and the relevance of c-jun NH2-terminal kinases (JNK) suppression on islet survival. After routine isolation, increased AKT activity correlated with suppression of JNK activation, suggesting that they may be related events. Indeed, the increase in AKT activation after isolation correlated with suppression of apoptosis signal-regulating kinase 1 (ASK1), a kinase acting upstream of JNK, by phosphorylation at Ser83. We therefore examined whether modulators of phosphatidylinositol 3-kinase (PI3K)/AKT signaling affected JNK activation. PI3K inhibition led to increased JNK phosphorylation and islet cell death, which could be reversed by the specific JNK inhibitor SP600125. In addition, IGF-I suppressed cytokine-mediated JNK activation in a PI3K-dependent manner. We also demonstrate that inhibition of PI3K rendered islets more susceptible to cytokine-mediated cell death. SP600125 transiently protected islets from cytokine-mediated cell death, suggesting that JNK may not be necessary for cytokine-induced cell death. When administered immediately after isolation, SP600125 improved islet survival and function, even 48 h after removal of SP600125, suggesting that JNK inhibition by SP600125 may be a viable strategy for improving isolated islet survival. Taken together, these results demonstrate that PI3K/AKT suppresses the JNK pathway in islets, and this cross-talk represents an important antiapoptotic consequence of PI3K/AKT activation.
Cited by
114 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献