The Endogenous Growth Hormone Secretagogue (Ghrelin) Is Synthesized and Secreted by Chondrocytes

Author:

Caminos J. E.,Gualillo O.,Lago F.,Otero M.,Blanco M.,Gallego R.,Garcia-Caballero T.,Goldring M. B.,Casanueva F. F.,Gomez-Reino J. J.,Dieguez C.

Abstract

Ghrelin, the endogenous ligand for the GH secretagogue receptor (GHS-R), is a recently isolated hormone, prevalently expressed in stomach but also in other tissues such as hypothalamus and placenta. This novel acylated peptide acts at a central level to stimulate GH secretion and, notably, to regulate food intake. However, the existence of further, as yet unknown, effects or presence of ghrelin in peripheral tissues cannot be ruled out. In this report, we provide clear evidence for the expression of ghrelin peptide and mRNA in human, mouse, and rat chondrocytes. Immunoreactive ghrelin was identified by immunohistochemistry in rat cartilage, being localized prevalently in proliferative and maturative zone of the epiphyseal growth plate, and in mouse and human chondrocytic cell lines. Moreover, ghrelin mRNA was detected by RT-PCR and confirmed by Southern analysis in rat cartilage as well as in mouse and human chondrocytes cell lines. Ghrelin mRNA expression has been studied in rat along early life development showing a stable profile of expression throughout. Although ghrelin expression in chondrocytes suggests the presence of an unexpected autocrine/paracrine pathway, we failed to identify the functional GH secretagogue receptor type 1A by RT-PCR. On the other hand, binding analysis with 125I ghrelin suggests the presence of specific receptors different from the 1A isotype. Scatchard analysis revealed the presence of two receptors with respectively high and low affinity. Finally, ghrelin, in vitro, was able to significantly stimulate cAMP production and inhibits chondrocytes metabolic activity both in human and murine chondrocytes. In addition, ghrelin is able to actively decrease both spontaneous or insulin-induced long chain fatty acid uptake in human and mouse chondrocytes. This study is the first to provide evidence for the presence of this novel peptide in chondrocytes and suggests novel potential roles for this newly recognized component of the GH axis in cartilage metabolism.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3