Estrogen Acidifies Vaginal pH by Up-Regulation of Proton Secretion via the Apical Membrane of Vaginal-Ectocervical Epithelial Cells

Author:

Gorodeski George I.123,Hopfer Ulrich3,Liu Chung Chiun4,Margles Ellen1

Affiliation:

1. Departments of Reproductive Biology (G.I.G., E.M.), Case Western Reserve University, Cleveland, Ohio 44106

2. Departments of Oncology (G.I.G.), Case Western Reserve University, Cleveland, Ohio 44106

3. Departments of Physiology and Biophysics (G.I.G., U.H.), Case Western Reserve University, Cleveland, Ohio 44106

4. Department of Chemical Engineering (C.C.L.), Case Western Reserve University, Cleveland, Ohio 44106

Abstract

AbstractThe objective of this study was to assess estrogen-dependent cellular mechanisms that could contribute to the acid pH of the vaginal lumen. Cultures of normal human cervical-vaginal epithelial (hECE) cells and endocervical cells were grown on filters, and acidification of the extracellular solutions on the luminal (L-pHo) and contraluminal (CL-pHo) sides was measured. The hECE cells and endocervical cells decreased CL-pHo from 7.40 to 7.25 within 20–30 min of incubation in basic salt solution. Endocervical cells also produced a similar decrease in L-pHo. In contrast, hECE cells acidified L-pHo down to pH 7.05 when grown as monoculture and down to pH 6.05 when grown in coculture with human cervical fibroblasts. This enhanced acid secretion into the luminal compartment was estrogen dependent because removal of endogenous steroid hormones attenuated the effect, whereas treatment with 17β-estradiol restored it. The 17β-estradiol effect was dose dependent (EC50 0.5 nm) and could be mimicked by diethylstilbestrol and in part by estrone and tamoxifen. Preincubation with ICI-182780, but not with progesterone, blocked the estrogen effect. Preincubation of cells with the V-ATPase blocker bafilomycin A1, when administered to the luminal solution, attenuated the baseline and estrogen-dependent acid secretion into the luminal solution. Treatment with EGTA, to abrogate the tight junctional resistance, blocked the decrease in L-pHo and stimulated a decrease in CL-pHo, indicating that the tight junctions are necessary for maintaining luminal acidification. We conclude that vaginal-ectocervical cells acidify the luminal canal by a mechanism of active proton secretion, driven in part by V-H+-ATPase located in the apical plasma membrane and that the baseline active net proton secretion occurs constitutively throughout life and that this acidification is up-regulated by estrogen.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference64 articles.

1. Bacterial vaginosis a “broad overview.”;Pedraza Aviles;Rev Latinoam Microbiol,1999

2. Growth and survival of Trichomonas vaginalis.;Kostara;J Med Microbiol,1998

3. Pathogenesis of abnormal vaginal bacterial flora.;Donders;Am J Obstet Gynecol,2000

4. Postmenopausal vaginal atrophy and atrophic vaginitis.;Pandit;Am J Med Sci,1997

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3