Roles of the Lactogens and Somatogens in Perinatal and Postnatal Metabolism and Growth: Studies of a Novel Mouse Model Combining Lactogen Resistance and Growth Hormone Deficiency

Author:

Fleenor Donald1,Oden Jon1,Kelly Paul A.2,Mohan Subburaman3,Alliouachene Samira2,Pende Mario2,Wentz Sabrina1,Kerr Jennifer1,Freemark Michael1

Affiliation:

1. Division of Pediatric Endocrinology and Diabetes (D.F., J.O., S.W., J.K., M.F.), Duke University Medical Center, Durham North Carolina 27710

2. Institut National de la Santé et de la Recherche Médicale Unité 584-Hormone Targets (P.A.K., S.A., M.P.), Faculte de Medecine Necker, Paris, France 75015

3. Musculoskeletal Diseases Center (S.M.), Jerry L. Pettis Veterans Affairs Medical Center, Loma Linda, California 92357

Abstract

To delineate the roles of the lactogens and GH in the control of perinatal and postnatal growth, fat deposition, insulin production, and insulin action, we generated a novel mouse model that combines resistance to all lactogenic hormones with a severe deficiency of pituitary GH. The model was created by breeding PRL receptor (PRLR)-deficient (knockout) males with GH-deficient (little) females. In contrast to mice with isolated GH or PRLR deficiencies, double-mutant (lactogen-resistant and GH-deficient) mice on d 7 of life had growth failure and hypoglycemia. These findings suggest that lactogens and GH act in concert to facilitate weight gain and glucose homeostasis during the perinatal period. Plasma insulin and IGF-I and IGF-II concentrations were decreased in both GH-deficient and double-mutant neonates but were normal in PRLR-deficient mice. Body weights of the double mutants were reduced markedly during the first 3–4 months of age, and adults had striking reductions in femur length, plasma IGF-I and IGF binding protein-3 concentrations, and femoral bone mineral density. By age 6–12 months, however, the double-mutant mice developed obesity, hyperleptinemia, fasting hyperglycemia, relative hypoinsulinemia, insulin resistance, and glucose intolerance; males were affected to a greater degree than females. The combination of perinatal growth failure and late-onset obesity and insulin resistance suggests that the lactogen-resistant/GH-deficient mouse may serve as a model for the development of the metabolic syndrome.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3