The Androgen Metabolite, 5α-Androstane-3β, 17β-Diol, Is a Potent Modulator of Estrogen Receptor-β1-Mediated Gene Transcription in Neuronal Cells

Author:

Pak Toni R.1,Chung Wilson C. J.1,Lund Trent D.1,Hinds Laura R.1,Clay Colin M.1,Handa Robert J.1

Affiliation:

1. Department of Biomedical Science, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523

Abstract

5α-Androstane-3β, 17β-diol (3βAdiol) is a metabolite of the potent androgen, 5α-dihydrotestosterone. Recent studies showed that 3βAdiol binds to estrogen receptor (ER)-β and regulates growth of the prostate gland through an estrogen, and not androgen, receptor-mediated pathway. These data raise the possibility that 3βAdiol could regulate important physiological processes in other tissues that produce 3βAdiol, such as the brain. Although it is widely accepted that the brain is a target for 5α-dihydrotestosterone action, there is no evidence that 3βAdiol has a direct action in neurons. To explore the molecular mechanisms by which 3βAdiol might act to modulate gene transcription in neuronal cells, we examined whether 3βAdiol activates ER-mediated promoter activity and whether ER transactivation is facilitated by a classical estrogen response element (ERE) or an AP-1 complex. The HT-22 neuronal cell line was cotransfected with an expression vector containing ERα, ER-β1, or the ERβ splice variant, ER-β2 and one of two luciferase-reporter constructs containing either a consensus ERE or an AP-1 enhancer site. Cells were treated with 100 nm 17β-estradiol, 100 nm 3βAdiol, or vehicle for 15 h. We show that 3βAdiol activated ER-β1-induced transcription mediated by an ERE equivalent to that of 17β-estradiol. By contrast, 3βAdiol had no effect on ERα- or ER-β2-mediated promoter activity. Moreover, ER-β1 stimulated transcription mediated by an ERE and inhibited transcription by an AP-1 site in the absence of ligand binding. These data provide evidence for activation of ER signaling pathways by an androgen metabolite in neuronal cells.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 126 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3