Clock Gene Bmal1 Modulates Human Cartilage Gene Expression by Crosstalk With Sirt1

Author:

Yang Wei1,Kang Xiaomin1,Liu Jiali2,Li Huixia2,Ma Zhengmin2,Jin Xinxin1,Qian Zhuang1,Xie Tianping1,Qin Na13,Feng Dongxu14,Pan Wenjie14,Chen Qian156,Sun Hongzhi2,Wu Shufang1

Affiliation:

1. Center for Translational Medicine (W.Y., X.K., X.J., Z.Q., T.X., N.Q., D.F., W.P., Q.C., S.W.), the First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi 710061, People's Republic of China;

2. Key Laboratory of Environment and Genes Related to Diseases (J.L., H.L., Z.M., H.S.), Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China;

3. Department of Pharmacy (N.Q.), Luoyang Orthopedic Hospital, Luoyang, 450052 Henan, China;

4. Hong Hui Hospital (D.F., W.P.), Xi'an Jiaotong University School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China;

5. Frontier Institute of Science and Technology (Q.C.), Xi'an Jiaotong University, Xi'an, Shaanxi 710061, People's Republic of China;

6. Department of Orthopaedics (Q.C.), Brown University Alpert Medical School and Rhode Island Hospital, Providence, Rhode Island 02903

Abstract

The critical regulation of the peripheral circadian gene implicated in osteoarthritis (OA) has been recently recognized; however, the causative role and clinical potential of the peripheral circadian rhythm attributable to such effects remain elusive. The purpose of this study was to elucidate the role of a circadian gene Bmal1 in human cartilage and pathophysiology of osteoarthritis. In our present study, the mRNA and protein levels of circadian rhythm genes, including nicotinamide adenine dinucleotide oxidase (NAD+) and sirtuin 1 (Sirt1), in human knee articular cartilage were determined. In OA cartilage, the levels of both Bmal1 and NAD+ decreased significantly, which resulted in the inhibition of nicotinamide phosphoribosyltransferase activity and Sirt1 expression. Furthermore, the knockdown of Bmal1 was sufficient to decrease the level of NAD+ and aggravate OA-like gene expression changes under the stimulation of IL-1β. The overexpression of Bmal1 relieved the alteration induced by IL-1β, which was consistent with the effect of the inhibition of Rev-Erbα (known as NR1D1, nuclear receptor subfamily 1, group D). On the other hand, the transfection of Sirt1 small interfering RNA not only resulted in a reduction of the protein expression of Bmal1 and a moderate increase of period 2 (per2) and Rev-Erbα but also further exacerbated the survival of cells and the expression of cartilage matrix-degrading enzymes induced by IL-1β. Overexpression of Sirt1 restored the metabolic imbalance of chondrocytes caused by IL-1β. These observations suggest that Bmal1 is a key clock gene to involve in cartilage homeostasis mediated through sirt1 and that manipulating circadian rhythm gene expression implicates an innovative strategy to develop novel therapeutic agents against cartilage diseases.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3