A Role for Androgens in Epithelial Proliferation and Formation of Glands in the Mouse Uterus

Author:

Simitsidellis Ioannis1,Gibson Douglas A.1,Cousins Fiona L.1,Esnal-Zufiaurre Arantza1,Saunders Philippa T. K.1

Affiliation:

1. Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute, EH16 4TJ, Edinburgh, United Kingdom

Abstract

Abstract The endometrium consists of stromal and epithelial compartments (luminal and glandular) with distinct functions in the regulation of uterine homeostasis. Ovarian sex steroids, namely 17β-estradiol and progesterone, play essential roles in modulating uterine cell proliferation, stromal-epithelial cross-talk and differentiation in preparation for pregnancy. The effect of androgens on uterine function remains poorly understood. The current study investigated the effect of the non-aromatizable androgen dihydrotestosterone (DHT) on mouse endometrial function. Ovx female mice were given a single sc injection (short treatment) or 7 daily injections (long treatment) of vehicle alone (5% ethanol, 0.4% methylcellulose) or vehicle with the addition of 0.2 mg DHT (n=8/group) and a single injection of bromodeoxyuridine 2 hours prior to tissue recovery. Treatment with DHT increased uterine weight, the area of the endometrial compartment and immunoexpression of the androgen receptor in the luminal and glandular epithelium. Treatment-dependent proliferation of epithelial cells was identified by immunostaining for MKi67 and bromodeoxyuridine. Real-time PCR identified significant DHT-dependent changes in the concentrations of mRNAs encoded by genes implicated in the regulation of the cell cycle (Wee1, Ccnd1, Rb1) and stromal-epithelial interactions (Wnt4, Wnt5a, Wnt7a, Cdh1, Vcl, Igf1, Prl8, Prlr) as well as a striking effect on the number of endometrial glands. This study has revealed a novel role for androgens in regulating uterine function with an effect on the glandular compartment of the endometrium. This previously unrecognized role for androgens has implications for our understanding of the role of androgens in regulation of endometrial function and fertility in women.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3