Pathogenesis of Adrenal Aldosterone-Producing Adenomas Carrying Mutations of the Na+/K+-ATPase

Author:

Stindl J.1,Tauber P.1,Sterner C.1,Tegtmeier I.1,Warth R.1,Bandulik S.1

Affiliation:

1. Medical Cell Biology, University of Regensburg, 93053 Regensburg, Germany

Abstract

Aldosterone-producing adenoma (APA) is a major cause of primary aldosteronism, leading to secondary hypertension. Somatic mutations in the gene for the α1 subunit of the Na+/K+-ATPase were found in about 6% of APAs. APA-related α1 subunit of the Na+/K+-ATPase mutations lead to a loss of the pump function of the Na+/K+-ATPase, which is believed to result in membrane depolarization and Ca2+-dependent stimulation of aldosterone synthesis in adrenal cells. In addition, H+ and Na+ leak currents via the mutant Na+/K+-ATPase were suggested to contribute to the phenotype. The aim of this study was to investigate the cellular pathophysiology of adenoma-associated Na+/K+-ATPase mutants (L104R, V332G, G99R) in adrenocortical NCI-H295R cells. The expression of these Na+/K+-ATPase mutants depolarized adrenal cells and stimulated aldosterone secretion. However, an increase of basal cytosolic Ca2+ levels in Na+/K+-ATPase mutant cells was not detectable, and stimulation with high extracellular K+ hardly increased Ca2+ levels in cells expressing L104R and V332G mutant Na+/K+-ATPase. Cytosolic pH measurements revealed an acidification of L104R and V332G mutant cells, despite an increased activity of the Na+/H+ exchanger. The possible contribution of cellular acidification to the hypersecretion of aldosterone was supported by the observation that aldosterone secretion of normal adrenocortical cells was stimulated by acetate-induced acidification. Taken together, mutations of the Na+/K+-ATPase depolarize adrenocortical cells, disturb the K+ sensitivity, and lower intracellular pH but, surprisingly, do not induce an overt increase of intracellular Ca2+. Probably, the autonomous aldosterone secretion is caused by the concerted action of several pathological signaling pathways and incomplete cellular compensation.

Publisher

The Endocrine Society

Subject

Endocrinology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3