Identification of California Condor Estrogen Receptors 1 and 2 and Their Activation by Endocrine Disrupting Chemicals

Author:

Felton Rachel G.1,Steiner Cynthia C.1,Durrant Barbara S.1,Keisler Duane H.2,Milnes Matthew R.3,Tubbs Christopher W.1

Affiliation:

1. San Diego Zoo Institute for Conservation Research (R.G.F., C.C.S., B.S.D., C.W.T.), Escondido, California 92027

2. Division of Animal Sciences (D.H.K.), University of Missouri, Columbia, Missouri 65211

3. Department of Natural Sciences (M.R.M.), Mars Hill University, Mars Hill, North Carolina 28754

Abstract

Recently, California condors (Gymnogyps californianus) have been reintroduced to coastal regions of California where they feed on marine mammal carcasses. There is evidence that coastal-dwelling condors experience reproductive issues, such as eggshell thinning, likely resulting from exposure to endocrine-disrupting chemicals (EDCs). To address this problem, we have identified and cloned condor estrogen receptors (ESRs) 1 and 2 and characterized their activation by EDCs present in the coastal habitats where condors reside. Dichlorodiphenyltrichloroethane (DDT) and its metabolites all activated ESR1 and ESR2, although their relative potency differed between the receptors. Bisphenol A, dieldrin, trans-nonachlor, and polychlorinated biphenyl 52 (PCB52) moderately activated both ESRs, whereas PCB138 and PCB153 stimulated little to no activation. Overall, EDC activation of condor ESR2, which is the first ESR2 cloned from a raptor species, was greater than that of ESR1. Significant activation of both condor ESRs by EDCs occurred at high concentrations (≥1μM), which are within the range of plasma levels of certain EDCs (eg, dichlorodiphenyldichloroethylene [p'p-DDE]) in coastal-dwelling condors. Finally, phylogenetic analyses of ESRs of 41 avian species identified a single amino acid position in ESR2 under positive selection. Mutation of this amino acid affected receptor activation by EDCs, suggesting the identity of this amino acid may influence EDC sensitivity of avian species. Together, these findings broaden our understanding of EDC interactions with ESRs in avian species. For condors specifically, these data could be used to evaluate EDC exposure risk at future release sites to identify those least likely to compromise the continued recovery of this species.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3