Absence of Female-Typical Pheromone-Induced Hypothalamic Neural Responses and Kisspeptin Neuronal Activity in α-Fetoprotein Knockout Female Mice

Author:

Taziaux Melanie1,Bakker Julie12

Affiliation:

1. Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences (M.T., J.B.), University of Liège, 4000 Liège, Belgium

2. Netherlands Institute for Neuroscience (J.B.), Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands

Abstract

Pheromones induce sexually dimorphic neuroendocrine responses, such as LH secretion. However, the neuronal network by which pheromones are converted into signals that will initiate and modulate endocrine changes remains unclear. We asked whether 2 sexually dimorphic populations in the anteroventral periventricular and periventricular nuclei that express kisspeptin and tyrosine hydroxylase (TH) are potential candidates that will transduce the olfactory signal to the neuroendocrine system. Furthermore, we assessed whether this transduction is sensitive to perinatal actions of estradiol by using female mice deficient in α-fetoprotein (AfpKO), which lack the protective actions of Afp against maternal estradiol. Wild-type (WT) and AfpKO male and female mice were exposed to same- versus opposite-sex odors and the expression of Fos (the protein product of the immediate early gene c-Fos) was analyzed along the olfactory projection pathways as well as whether kisspeptin, TH, and GnRH neurons are responsive to opposite-sex odors. Male odors induced a female-typical Fos expression in target forebrain sites of olfactory inputs involved in reproduction in WT, but not in AfpKO females, whereas female odors induced a male-typical Fos expression in males of both genotypes. In WT females, opposite-sex odors induced Fos in kisspeptin and TH neurons, whereas in AfpKO females and WT males, only a lower, but still significant, Fos expression was observed in TH but not in kisspeptin neurons. Finally, opposite-sex odors did not induce any significant Fos expression in GnRH neurons of both sexes or genotypes. Our results strongly suggest a role for fetal estrogen in the sexual differentiation of neural responses to sex-related olfactory cues.

Publisher

The Endocrine Society

Subject

Endocrinology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3