Author:
Gavete M. Lucia,Agote Maria,Martin M. Angeles,Alvarez Carmen,Escriva Fernando
Abstract
Abstract
The high energy demands of myocardium are met through the metabolism of lipids and glucose. Importantly, enhanced glucose utilization rates are crucial adaptations of the cardiac cell to some pathological conditions, such as hypertrophy and ischemia, but the effects of undernutrition on heart glucose metabolism are unknown. Our previous studies have shown that undernutrition increases insulin-induced glucose uptake by skeletal muscle. Consequently, we considered the possibility of a similar adaptation in the heart. With this aim, undernourished rats both in the basal state and after euglycemic hyperinsulinemic clamps were used to determine the following parameters in myocardium: glucose uptake, glucose transporter (GLUT) content, and some key components of the insulin signaling cascade. Heart membranes were prepared by subcellular fractionation in sucrose gradients. Although GLUT-4, GLUT-1, and GLUT-3 proteins and GLUT-4/1 mRNAs were reduced by undernutrition, basal and insulin-stimulated 2-deoxyglucose uptake were significantly enhanced. Phosphoinositol 3-kinase activity remained greater than control values in both conditions. The abundance of p85α and p85β regulatory subunits of phosphoinositol 3-kinase was increased as was phospho-Akt during hyperinsulinemia. These changes seem to improve the insulin stimulus of GLUT-1 translocation, as its content was increased at the surface membrane. Such adaptations associated with undernutrition must be crucial to improvement of cardiac glucose uptake.
Reference53 articles.
1. Fetal nutrition and cardiovascular disease in adult life;Barker;Lancet,1993
2. The influence of fetal and postnatal growth on heart rate variability in young infants;Massin;Cardiology,2001
3. Fetal origins of cardiovascular disease;Barker;Ann Med,1999
4. Energy metabolism of the heart: from the basic concepts to clinical applications;Taegtmeyer;Curr Prob Cardiol,1994
5. Developmental regulation of GLUT-1 (erythroid/Hep G2) and GLUT-4 (muscle/fat) glucose transporter expression in rat heart, skeletal muscle, and brown adipose tisssue;Santalucia;Endocrinology,1992
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献