Distribution of Vesicular Glutamate Transporter-2 Messenger Ribonucleic Acid and Protein in the Septum-Hypothalamus of the Rat

Author:

Lin Winston1,McKinney Kyle1,Liu Liansheng1,Lakhlani Shruti1,Jennes Lothar1

Affiliation:

1. Department of Anatomy and Neurobiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536

Abstract

The excitatory neurotransmitter glutamate is involved in the control of most, perhaps all, neuroendocrine systems, yet the sites of glutamatergic neurons and their processes are unknown. Here, we used in situ hybridization and immunohistochemistry for the neuron-specific vesicular glutamate transporter-2 (VGLUT2) to identify the neurons in female rats that synthesize the neurotransmitter glutamate as well as their projections throughout the septum-hypothalamus. The results show that glutamatergic neurons are present in the septum-diagonal band complex and throughout the hypothalamus. The preoptic area and ventromedial and dorsomedial nuclei are particularly rich in glutamatergic neurons, followed by the supraoptic, paraventricular, and arcuate nuclei, whereas the suprachiasmatic nucleus does not express detectable amounts of VGLUT2 mRNA. Immunoreactive neurites are seen in very high densities in all regions analyzed, particularly in the preoptic region, followed by the ventromedial, dorsomedial, and arcuate nuclei as well as the external layer of the median eminence, whereas the mammillary complex does not exhibit VGLUT2 immunoreactivity. Many VGLUT2 immunoreactive fibers also contained synaptophysin, suggesting that the transporter is indeed localized to presynaptic terminals. Together, the results identify glutamatergic cell bodies throughout the septum-hypothalamus in region-specific patterns and show that glutamatergic nerve terminals are present in very large numbers such that most neurons in these brain regions can receive glutamatergic input. We examined the GnRH system as an example of a typical neuroendocrine system and could show that the GnRH perikarya are closely apposed by many VGLUT2-immunoreactive boutons, some of which also contained synaptophysin. The presence of VGLUT2 mRNA-containing cells in specific nuclei of the hypothalamus indicates that many neuroendocrine neurons coexpress glutamate as neurotransmitter, in addition to neuropeptides. These systems include the oxytocin, vasopressin, or CRH neurons as well as many others in the periventricular and mediobasal hypothalamus. The presence of VGLUT2 mRNA in steroid-sensitive regions of the hypothalamus, such as the anteroventral periventricular, paraventricular, or ventromedial nuclei indicates that gonadal and adrenal steroid can directly alter the functions of these glutamatergic neurons.

Publisher

The Endocrine Society

Subject

Endocrinology

Reference34 articles.

1. Glutamate, the dominant excitatory transmitter in neuroendocrine regulation.;Van den Pol;Science,1990

2. Glutamate neurons in hypothalamus regulate excitatory transmission.;Van den Pol;J Neurosci,1993

3. Glutamate: a major neuroendocrine excitatory signal mediating steroid effects on gonadotropin secretion.;Brann;J Steroid Biochem Mol Biol,1995

4. Excitatory amino acids: evidence for a role in the control of reproduction and anterior pituitary hormone secretion.;Brann;Endocr Rev,1997

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3