MED14 and MED1 Differentially Regulate Target-Specific Gene Activation by the Glucocorticoid Receptor

Author:

Chen Weiwei1,Rogatsky Inez2,Garabedian Michael J.34

Affiliation:

1. Pharmacology (W.C.) and New York University Cancer Institute, New York University School of Medicine, New York, New York 10016;

2. Hospital for Special Surgery, Cornell University School of Medicine (I.R.), New York, New York 10021

3. Departments of Microbiology (M.J.G.), New York, New York 10016;

4. Urology (M.J.G.), New York, New York 10016;

Abstract

AbstractThe Mediator subunits MED14 and MED1 have been implicated in transcriptional regulation by the glucocorticoid receptor (GR) by acting through its activation functions 1 and 2. To understand the contribution of these Mediator subunits to GR gene-specific regulation, we reduced the levels of MED14 and MED1 using small interfering RNAs in U2OS-hGR osteosarcoma cells and examined the mRNA induction by dexamethasone of four primary GR target genes, interferon regulatory factor 8 (IRF8), ladinin 1, IGF-binding protein 1 (IGFBP1), and glucocorticoid-inducible leucine zipper (GILZ). We found that the GR target genes differed in their requirements for MED1 and MED14. GR-dependent mRNA expression of ladinin 1 and IRF8 required both MED1 and MED14, whereas induction of IGFBP1 mRNA by the receptor was dependent upon MED14, but not MED1. In contrast, GILZ induction by GR was largely independent of MED1 and MED14, but required the p160 cofactor transcriptional intermediary factor 2. Interestingly, we observed higher GR occupancy at GILZ than at the IGFBP1 or IRF8 glucocorticoid response element (GREs). In contrast, recruitment of MED14 compared with GR at IGFBP1 and IRF8 was higher than that observed at GILZ. At GILZ, GR and RNA polymerase II were recruited to both the GRE and the promoter, whereas at IGFBP1, RNA polymerase II occupied the promoter, but not the GRE. Thus, MED14 and MED1 are used by GR in a gene-specific manner, and the requirement for the Mediator at GILZ may be bypassed by increased GR and RNA polymerase II occupancy at the GREs. Our findings suggest that modulation of the Mediator subunit activities would provide a mechanism for promoter selectivity by GR.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3