Single-Chain, Triple-Domain Gonadotropin Analogs with Disulfide Bond Mutations in the α-Subunit Elicit Dual Follitropin and Lutropin Activities in Vivo

Author:

Jablonka-Shariff Albina1,Kumar T. Rajendra23,Eklund Joshua2,Comstock Anna1,Boime Irving1

Affiliation:

1. Department of Molecular Biology and Pharmacology (A.J.-S., A.C., I.B.), Washington University School of Medicine, St. Louis, Missouri 63110;

2. Departments of Molecular and Integrative Physiology (T.R.K., J.E.), Kansas 66160

3. Pathology and Laboratory Medicine (T.R.K.), University of Kansas Medical Center, Kansas City, Kansas 66160

Abstract

AbstractThe human glycoprotein hormones chorionic gonadotropin (CG), TSH, LH, and FSH are heterodimers composed of a common α-subunit and a hormone-specific β-subunit. The subunits assemble noncovalently early in the secretory pathway. LH and FSH are synthesized in the same cell (pituitary gonadotrophs), and several of the α-subunit sequences required for association with either β-subunit are different. Nevertheless, no ternary complexes are observed for LH and FSH in vivo, i.e. both β-subunits assembled with a single α-subunit. To address whether the α-subunit can interact with more than one β-subunit simultaneously, we genetically linked the FSHβ- and CGβ-subunit genes to the common α-subunit, resulting in a single-chain protein that exhibited both activities in vitro. These studies also indicated that the bifunctional triple-domain variant (FSHβ-CGβ-α), is secreted as two distinct bioactive populations each corresponding to a single activity, and each bearing the heterodimer-like contacts. Although the data are consistent with the known secretion events of gonadotropins from the pituitary, we could not exclude the possibility whether transient intermediates are generated in vivo in which the α-subunit shuttles between the two β-subunits during early stages of accumulation in the endoplasmic reticulum. Therefore, constructs were engineered that would direct the synthesis of single-chain proteins completely devoid of heterodimer-like interactions but elicit both LH and FSH actions. These triple-domain, single-chain chimeras contain the FSHβ- and CGβ-subunits and an α-subunit with cystine bond mutations (cys10–60 or cys32–84), which are known to prevent heterodimer formation. Here we show that, despite disrupting the intersubunit interactions between the α- and both CGβ- and FSHβ-subunits, these mutated analogs exhibit both activities in vivo comparable to nonmutated triple-domain single chain. Such responses occurred despite the absence of quaternary contacts due to the disrupted bonds in the α-subunit. Thus, gonadotropin heterodimer assembly is critical for intracellular events, e.g. hormone-specific posttranslational modifications, but when heterodimers are present in the circulation, the α/β-contacts are not a prerequisite for receptor recognition.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3