Identification of the Major Oxidative 3α-Hydroxysteroid Dehydrogenase in Human Prostate That Converts 5α-Androstane-3α,17β-diol to 5α-Dihydrotestosterone: A Potential Therapeutic Target for Androgen-Dependent Disease

Author:

Bauman David R.1,Steckelbroeck Stephan1,Williams Michelle V.1,Peehl Donna M.2,Penning Trevor M.1

Affiliation:

1. Department of Pharmacology (D.R.B., S.S., M.V.W., T.M.P), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084;

2. Department of Urology (D.M.P.), Stanford University School of Medicine, Stanford, California 94305

Abstract

AbstractAndrogen-dependent prostate diseases initially require 5α-dihydrotestosterone (DHT) for growth. The DHT product 5α-androstane-3α,17β-diol (3α-diol), is inactive at the androgen receptor (AR), but induces prostate growth, suggesting that an oxidative 3α-hydroxysteroid dehydrogenase (HSD) exists. Candidate enzymes that posses 3α-HSD activity are type 3 3α-HSD (AKR1C2), 11-cis retinol dehydrogenase (RODH 5), L-3-hydroxyacyl coenzyme A dehydrogenase , RODH like 3α-HSD (RL-HSD), novel type of human microsomal 3α-HSD, and retinol dehydrogenase 4 (RODH 4). In mammalian transfection studies all enzymes except AKR1C2 oxidized 3α-diol back to DHT where RODH 5, RODH 4, and RL-HSD were the most efficient. AKR1C2 catalyzed the reduction of DHT to 3α-diol, suggesting that its role is to eliminate DHT. Steady-state kinetic parameters indicated that RODH 4 and RL-HSD were high-affinity, low-capacity enzymes whereas RODH 5 was a low-affinity, high-capacity enzyme. AR-dependent reporter gene assays showed that RL-HSD, RODH 5, and RODH 4 shifted the dose-response curve for 3α-diol a 100-fold, yielding EC50 values of 2.5 × 10−9m, 1.5 × 10−9m, and 1.0 × 10−9m, respectively, when compared with the empty vector (EC50 = 1.9 × 10−7m). Real-time RT-PCR indicated that L-3-hydroxyacyl coenzyme A dehydrogenase and RL-HSD were expressed more than 15-fold higher compared with the other candidate oxidative enzymes in human prostate and that RL-HSD and AR were colocalized in primary prostate stromal cells. The data show that the major oxidative 3α-HSD in normal human prostate is RL-HSD and may be a new therapeutic target for treating prostate diseases.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Reference59 articles.

1. Androgen action and pharmacologic uses.;Handelsman;Endocrinology.,2001

2. The prostate: development and physiology.;Hayward;Radiol Clin North Am,2000

3. Molecular endocrinology of hydroxysteroid dehydrogenases.;Penning;Endocr Rev,1997

4. Management of prostate diseases;Weiss;Management of prostate diseases.,1997

5. Role of dihydrotestosterone in androgen action.;Wilson;Prostate Suppl,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3