The 1,25(OH)2D3-Regulated Transcription Factor MN1 Stimulates Vitamin D Receptor-Mediated Transcription and Inhibits Osteoblastic Cell Proliferation

Author:

Sutton Amelia L. M.1,Zhang Xiaoxue1,Ellison Tara I.1,MacDonald Paul N.1

Affiliation:

1. Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106

Abstract

AbstractThe vitamin D endocrine system is essential for maintaining mineral ion homeostasis and preserving bone density. The most bioactive form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] elicits its effects by binding to the vitamin D receptor (VDR) and regulating the transcription of target genes. In osteoblasts, the bone-forming cells of the skeleton, 1,25-(OH)2D3 regulates cell proliferation, differentiation, and mineralization of the extracellular matrix. Despite these well-characterized biological functions, relatively few 1,25-(OH)2D3 target genes have been described in osteoblasts. In this study, we characterize the regulation and function of MN1, a novel 1,25-(OH)2D3-induced gene in osteoblastic cells. MN1 is a nuclear protein first identified as a gene disrupted in some meningiomas and leukemias. Our studies demonstrate that MN1 preferentially stimulates VDR-mediated transcription through its ligand-binding domain and synergizes with the steroid receptor coactivator family of coactivators. Furthermore, forced expression of MN1 in osteoblastic cells results in a profound decrease in cell proliferation by slowing S-phase entry, suggesting that MN1 is an antiproliferative factor that may mediate 1,25-(OH)2D3-dependent inhibition of cell growth. Collectively, these data indicate that MN1 is a 1,25-(OH)2D3-induced VDR coactivator that also may have critical roles in modulating osteoblast proliferation.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

Reference57 articles.

1. Overview of general physiologic features and functions of vitamin D.;DeLuca;Am J Clin Nutr,2004

2. Vitamin D: more than a “bone-a-fide” hormone.;Sutton;Mol Endocrinol,2003

3. Vitamin D control of osteoblast function and bone extracellular matrix mineralization.;Van Leeuwen;Crit Rev Eukaryot Gene Expr,2001

4. Molecular nature of the vitamin D receptor and its role in regulation of gene expression.;Jurutka;Rev Endocr Metab Disord,2001

5. Emerging insights into the coactivator role of NCoA62/SKIP in vitamin D-mediated transcription.;MacDonald;J Steroid Biochem Mol Biol,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3