Affiliation:
1. Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
Abstract
AbstractThe sodium/iodide symporter (NIS) mediates a remarkably effective targeted radioiodide therapy in thyroid cancer; this approach is an emerging candidate for treating other cancers that express NIS, whether endogenously or by exogenous gene transfer. Thus far, the only extrathyroidal malignancy known to express functional NIS endogenously is breast cancer. Therapeutic efficacy in thyroid cancer requires that radioiodide uptake be maximized in tumor cells by manipulating well-known regulatory factors of NIS expression in thyroid cells, such as TSH, which stimulates NIS expression via cAMP. Similarly, therapeutic efficacy in breast cancer will likely depend on manipulating NIS regulation in mammary cells, which differs from that in the thyroid. Human breast adenocarcinoma MCF-7 cells modestly express endogenous NIS when treated with all-trans-retinoic acid (tRa). We report here that hydrocortisone and ATP each markedly stimulates tRa-induced NIS protein expression and plasma membrane targeting in MCF-7 cells, leading to at least a 100% increase in iodide uptake. Surprisingly, the adenyl cyclase activator forskolin, which promotes NIS expression in thyroid cells, markedly decreases tRa-induced NIS protein expression in MCF-7 cells. Isobutylmethylxanthine increases tRa-induced NIS expression in MCF-7 cells, probably through a purinergic signaling system independent of isobutylmethylxanthine’s action as a phosphodiesterase inhibitor. We also observed that neither iodide, which at high concentrations down-regulates NIS in the thyroid, nor cAMP has a significant effect on NIS expression in MCF-7 cells. Our findings may open new strategies for breast-selective pharmacological modulation of functional NIS expression, thus improving the feasibility of using radioiodide to effectively treat breast cancer.
Subject
Endocrinology,Molecular Biology,General Medicine
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献