Oxytocin Inhibits T-Type Calcium Current of Human Decidual Stromal Cells

Author:

Liu Bo1,Hill Stephen J.1,Khan Raheela N.2

Affiliation:

1. Institute of Cell Signalling (B.L., S.J.H.), University of Nottingham, Queens Medical Centre, Nottingham NG7 2UH, United Kingdom

2. Centre for Reproduction and Early Life (R.N.K.), Institute for Clinical Research, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Abstract

Abstract Context: Little is known about the crosstalk between the decidua and myometrium in relation to human labor. The hormone oxytocin (OT) is considered to be a key mediator of uterine contractility during parturition, exerting some of its effects through calcium channels. Objective: The objective was to characterize the effect of OT on the T-type calcium channel in human decidual stromal cells before and after the onset of labor. Design: The nystatin-perforated patch-clamp technique was used to record inward T-type calcium current (ICa(T)) from acutely dispersed decidual stromal cells obtained from women at either elective cesarean section [CS (nonlabor)] or after normal spontaneous vaginal delivery [SVD (labor)]. Setting: These studies took place at the University of Nottingham Medical School. Results: I Ca(T) of both SVD and CS cells were blocked by nickel (IC50 of 5.6 μm) and cobalt chloride (1 mm) but unaffected by nifedipine (10 μm). OT (1 nm to 3.5 μm) inhibited ICa(T) of SVD cells in a concentration-dependent manner, with a maximal inhibition of 79.0% compared with 26.2% in decidual cells of the CS group. OT-evoked reduction of ICa(T) was prevented by preincubation with the OT antagonist L371,257 in the SVD but not CS group. OT, in a concentration-dependent manner, displaced the steady-state inactivation curve for ICa(T) to the left in the SVD group with no significant effect on curves of the CS group. Conclusion: Inhibition of ICa(T) by OT in decidual cells obtained during labor may signify important functional remodeling of uterine signaling during this period.

Publisher

The Endocrine Society

Subject

Biochemistry, medical,Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3