Transcriptional Profiling of the Chick Pineal Gland, a Photoreceptive Circadian Oscillator and Pacemaker

Author:

Bailey Michael J.12,Beremand Phillip D.12,Hammer Rick12,Bell-Pedersen Deborah12,Thomas Terry L.12,Cassone Vincent M.12

Affiliation:

1. Center for Biological Clocks Research (M.J.B., P.D.B., R.H., D.B.P., T.L.T., V.M.C.), College Station, Texas 77843-3258

2. Department of Biology (M.J.B., P.D.B., R.H., D.B.P., T.L.T., V.M.C.), Texas A&M University, College Station, Texas 77843-3258

Abstract

AbstractThe avian pineal gland contains both circadian oscillators and photoreceptors to produce rhythms in biosynthesis of the hormone melatonin in vivo and in vitro. The molecular mechanisms for melatonin biosynthesis are largely understood, but the mechanisms driving the rhythm itself or the photoreceptive processes that entrain the rhythm are unknown. We have produced cDNA microarrays of pineal gland transcripts under light-dark and constant darkness conditions. Rhythmic transcripts were classified according to function, representing diverse functional groups, including phototransduction pathways, transcription/translation factors, ion channel proteins, cell signaling molecules, and immune function genes. These were also organized relative to time of day mRNA abundance in light-dark and constant darkness. The transcriptional profile of the chick pineal gland reveals a more complex form of gene regulation than one might expect from a gland whose sole apparent function is the rhythmic biosynthesis of melatonin. The mRNAs encoding melatonin biosynthesis are rhythmic as are many orthologs of mammalian “clock genes.” However, the oscillation of phototransductive, immune, stress response, hormone binding, and other important processes in the transcriptome of the pineal gland, raises new questions regarding the role of the pineal gland in circadian rhythm generation, organization, and avian physiology.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3