Identification of a Novel Glucocorticoid Receptor Mutation in Budesonide-Resistant Human Bronchial Epithelial Cells

Author:

Kunz Susan1,Sandoval Robert1,Carlsson Peter23,Carlstedt-Duke Jan3,Bloom John W.45,Miesfeld Roger L.1

Affiliation:

1. From the Departments of Biochemistry and Molecular Biophysics (S.K., R.S., R.L.M.), Tucson, Arizona 85721

2. Karo Bio AB (P.C.), S-141 57 Huddinge, Sweden

3. Department of Medical Nutrition (P.C., J.C.-D.), Karolinska Institutet, Huddinge University Hospital, Novum, S-141 86 Huddinge, Sweden

4. Pharmacology (J.W.B.), Tucson, Arizona 85721

5. the Respiratory Sciences Center at the University of Arizona (J.W.B.), Tucson, Arizona 85721

Abstract

AbstractWe developed a molecular genetic model to investigate glucocorticoid receptor (GR) signaling in human bronchial epithelial cells in response to the therapeutic steroid budesonide. Based on a genetic selection scheme using the human Chago K1 cell line and integrated copies of a glucocorticoid-responsive herpes simplex virus thymidine kinase gene and a green fluorescent protein gene, we isolated five Chago K1 variants that grew in media containing budesonide and ganciclovir. Three spontaneous budesonide-resistant subclones were found to express low levels of GR, whereas two mutants isolated from ethylmethane sulfonate-treated cultures contained normal levels of GR protein. Analysis of the GR coding sequence in the budesonide-resistant subclone Ch-BdE5 identified a novel Val to Met mutation at amino acid position 575 (GRV575M) which caused an 80% decrease in transcriptional regulatory functions with only a minimal effect on ligand binding activity. Homology modeling of the GR structure in this region of the hormone binding domain and molecular dynamic simulations suggested that the GRV575M mutation would have a decreased affinity for the LXXLL motif of p160 coactivators. To test this prediction, we performed transactivation and glutathione-S-transferase pull-down assays using the p160 coactivator glucocorticoid interacting protein 1 (GRIP1)/transcriptional intermediary factor 2 and found that GRV575M transcriptional activity was not enhanced by GRIP1 in transfected cells nor was it able to bind GRIP1 in vitro. Identification of the novel GRV575M variant in human bronchial epithelial cells using a molecular genetic selection scheme suggests that functional assays performed in relevant cell types could identify subtle defects in GR signaling that contribute to reduced steroid sensitivities in vivo.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3