Coordinate Transcription of the ADAMTS-1 Gene by Luteinizing Hormone and Progesterone Receptor

Author:

Doyle Kari M. H.1,Russell Darryl L.1,Sriraman Venkataraman1,Richards JoAnne S.1

Affiliation:

1. Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030

Abstract

AbstractADAMTS-1 (a disintegrin and metalloproteinase with thrombospondin-like motifs) is a multifunctional protease that is expressed in periovulatory follicles. Herein we show that induction of ADAMTS-1 message in vivo and transcription of the ADAMTS-1 promoter in cultured granulosa cells are dependent on separable but coordinate actions of LH and the progesterone receptor (PR). To analyze the molecular mechanisms by which LH and PR regulate this gene, truncations and site-specific mutants of ADAMTS-1 promoter-luciferase reporter constructs (ADAMTS-1-Luc) were generated and transfected into rat granulosa cell cultures. Three regions of the promoter were found to be important for basal activity, two of which were guanine cytosine-rich binding sites for specificity proteins Sp1/Sp3 and the third bound a nuclear factor 1-like factor. Despite the absence of a consensus PR DNA response element in the proximal ADAMTS-1 promoter, cotransfection of a PRA (or PRB) expression vector stimulated ADAMTS-1 promoter activity, a response that was reduced by the PR antagonist ZK98299. Forskolin plus phorbol myristate acetate also increased promoter activity and, when added to cells cotransfected with PRA, ADAMTS-1 promoter activity increased further. Activation of the ADAMTS-1 promoter by PRA involves functional CAAT enhancer binding protein β, nuclear factor 1-like factor, and three Sp1/Sp3 binding sites as demonstrated by transfection of mutated promoter constructs. In summary, LH and PRA/B exert distinct but coordinate effects on transactivation of the ADAMTS-1 gene in granulosa cells in vivo and in vitro with PR acting as an inducible coregulator of the ADAMTS-1 gene.

Publisher

The Endocrine Society

Subject

Endocrinology,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3