Androgen Response to Hypothalamic-Pituitary-Adrenal Stimulation with Naloxone in Women with Myotonic Muscular Dystrophy

Author:

Buyalos R. P.1,Jackson R. V.2,Grice G. I.,Hockings G. I.2,Torpy D. J.2,Fox L. M.3,Boots L. R.4,Azziz R.5

Affiliation:

1. Department of Obstetrics and Gynecology, University of Kentucky (R.P.B.), Lexington, Kentucky 40536;

2. Department of Medicine, University of Queensland, Greenslopes Hospital (R.V.J., J.E.G., G.I.H., D.J.T.), Queensland, Australia;

3. Departments of Biostatistics (L.M.F.), Birmingham, Alabama 35233

4. Obstetrics and Gynecology (L.R.B., R.A.), Birmingham, Alabama 35233

5. Medicine (R.A.), University of Alabama, Birmingham, Alabama 35233

Abstract

Myotonic muscular dystrophy (MMD) is a disease of autosomal dominant inheritance characterized by multisystem disease, including myotonia, muscle-wasting and weakness of all muscular tissues, and endocrine abnormalities attributed to a genetic abnormality causing a defective cAMP-dependent kinase. We have previously reported that MMD patients demonstrate ACTH hypersecretion after endogenous CRH release stimulated by naloxone administration while manifesting a normal cortisol (F) response. Additionally, others have reported a reduced adrenal androgen (AA) response to exogenous ACTH administration in MMD patients. As ACTH stimulates the secretion of both AAs and F, it is possible that the discordant relationship of these hormones in MMD patients results from a defect of adrenocortical ACTH receptor function or postreceptor signaling or subsequent biochemical events. Furthermore, the molecular abnormality seen in MMD patients may suggest that the mechanism underlying the frequently observed discordances in the secretion of glucocorticoids and AAs (e.g. adrenarche, surgical trauma, severe burns, or intermittent glucocorticoid administration) are explainable solely via an alteration in the function of the ACTH receptor or postreceptor signaling. To ascertain whether the responses of F and AAs to endogenous ACTH diverged in this disorder, we prospectively studied the responses of these hormones to naloxone-stimulated CRH release in nine premenopausal women with MMD and seven healthy age and weight-matched control women. After naloxone infusion (125 μg/kg, iv), blood sampling was performed at baseline (i.e. −5 min) and at 30 and 60 min. In addition to the absolute hormone level at each time, we calculated the net increment (i.e. change) at 30 and 60 min and the area under the curve (AUC) for F, ACTH, dehydroepiandrosterone (DHA), and androstenedione (A4). Consistent with our previous study, MMD patients demonstrated higher ACTH levels at all sampling times except [minud]5 min. AUC analysis revealed the ACTHAUC values were significantly higher in MMD than in control women (457 ± 346 vs. 157 ± 123 pmol/min·L; P< 0.03), whereas the FAUC response did not differ between MMD and controls (13860 ± 3473 vs. 13375 ± 3465 nmol/min·L; P > 0.5). Despite the greater ACTH secretion, the baseline circulating dehydroepiandrosterone sulfate levels were significantly lower in MMD compared with control women (18 ± 23 vs. 61 ± 23 μmol/L; P < 0.002). The serum concentrations of A4 at baseline, 30 min, and 60 min and DHA levels at 30 and 60 min were also significantly lower in MMD vs. control women. Additionally, the A4AUC and DHAAUC values were significantly lower in MMD patients than in controls. Furthermore, the net response of DHA at 60 min to the endogenous ACTH increase was also reduced in MMD patients compared with that in control subjects (2.3 ± 2.1 vs. 5.6 ± 2.6 nmol/L; P < 0.02). In conclusion, in addition to ACTH hypersecretion to CRH-mediated stimuli, these data suggest that MMD patients have a defect in the adrenocortical response to ACTH, reflected in normal F and reduced DHA and A4 secretion. Whether this defect is inherent to the disease or simply reflects adaptive changes to chronic disease remains to be demonstrated. However, it is possible that further studies of the response of MMD patients to ACTH may reveal a mechanism that explains the frequently observed dichotomy in the secretion of glucocorticoids and AAs.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Myotonic dystrophy type 1 with diabetes mellitus, mixed hypogonadism and adrenal insufficiency;Endocrinology, Diabetes & Metabolism Case Reports;2018-01-18

2. Increased levels of tPA antigen and tPA/PAI-1 complex in myotonic dystrophy;Journal of Internal Medicine;2001-06

3. Abnormal Cytokine and Adrenocortical Hormone Regulation in Myotonic Dystrophy*;The Journal of Clinical Endocrinology & Metabolism;2000-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3