Affiliation:
1. Reproductive Endocrinology Center, University of California, San Francisco, San Francisco, CA 94143-0556
Abstract
The prognosis in ovarian carcinoma, the most lethal of the gynecologic neoplasms, is poor and has changed little in the last three decades. Only a small number respond to antiestrogen therapy, although the classic estrogen receptor, ER-α, has been identified in ovarian surface epithelium, from which approximately 90% of ovarian cancers originate. We have previously shown that ER-β mRNA is most abundant in human fetal ovaries, suggesting that it might play an important role in ovarian development. Therefore, we investigated the mRNA levels of both ERs in normal ovaries, ovarian serous cystadenocarcinomas, granulosa cells from patients undergoing in vitro fertilization (IVF), the ovarian surface epithelium cell line IOSE-Van, and the ovarian cancer cell lines SKOV3, HEY and OCC1.
Northern blots of normal and neoplastic ovaries were hybridized with an ER-β riboprobe that spans the A/B domain. We detected two major hybridizing bands at approximately 8 and 10 kb. An RNase protection assay using the same probe revealed a single band of the expected size. Hybridizing the same blot with an ER-α riboprobe showed a strong hybridizing band at approximately 6.5 kb. In ovarian cancer samples, ER-β mRNA level was decreased when compared to normal ovaries.
Using 25 cycles of RT-PCR followed by Southern blotting, we found equal amounts of ER-α and -β mRNAs in normal ovaries in all age groups from 33 to 75 years; however, in ovarian cancer tissue, the level of ER-α mRNA was similar or slightly higher, comparable to 103 to 104 copies of plasmid DNA, but ER-β mRNA levels were markedly decreased. Granulosa cells from IVF patients expressed high levels of ER-β mRNA. The OSE cell line expressed low level of ER-α, detectable after 40 cycles of RT-PCR and no ER-β mRNA. SKOV3, showed low level of ER-α and β mRNAs, whereas OCC1 showed low level of ER-β and relatively high level of ER-α. HEY did not contain detectable amounts of either ER after 40 cycles of RT-PCR. We found no evidence of differential splicing or major deletions in almost the entire coding region of ER-β in either normal ovaries or tumor samples.
Subject
Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献