The role of cytochromes CYP1A and CYP3A in the genotoxic effect of benzo(a)pyrene

Author:

Malygina Daria Alexandrovna1ORCID,Rogovskaya Nadezhda Yurievna1,Beltyukov Petr Petrovich1ORCID,Babakov V. N.1

Affiliation:

1. Research Institute of Hygiene, Occupational Pathology and Human Ecology FMBA of Russia

Abstract

Introduction. Benzo(a)pyrene metabolites are genotoxic compounds, the accumulation of which contributes to carcinogenesis. The main mechanism of metabolite formation is the benzo(a)pyrene oxidation by cytochromes P450 (CYP). Inhibitors of the main cytochromes can reduce the rate of metabolite formation and, as a result, to decrease the genotoxic effects of benzo(a)pyrene metabolites. In contrast, inducers of cytochromes contribute to the enhancement of genotoxicity. Objective. The aim of the work was to develop a cell model based on the HepaRG cells to study the role of cytochromes activity in the genotoxic effect of benzo (a) pyrene. Material and methods. To assess the effect of inhibitors of cytochromes CYP3A and CYP1A on the genotoxic effect of benzo(a)pyrene in HepaRG cells, the content of active forms of proteins of the DNA damage detection and repair system, phosphorylated forms of signaling cascade proteins was determined by immunoassay using Luminex xMAP technology. The cytotoxicity of benzo(a)pyrene was assessed by real-time cell analysis on xCelligence analyzer. Results. Inhibitors of CYP3A and CYP1A cytochromes, ketoconazole and α-naphthoflavone demonstrate the ability to diminish the toxic effects of benz (a) pyrene, reduce the activation of the DNA repair system, and have a multidirectional effect on the different tyrosine kinases phosphorylation in signaling pathways. Conclusion. HepaRG human hepatoma cells are a suitable cell model both to assess the contribution of cytochromes to the metabolism of xenobiotics and to study of the cell protection from the genotoxic effect of benzo (a) pyrene by cytochrome inhibitors. Limitations. The study was performed on a cell culture. To extrapolate the data to the organism, it is necessary to take into account the data of toxicodynamics and toxicokinetics.

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Reference30 articles.

1. Błaszczyk E., Mielżyńska-Švach D. Polycyclic aromatic hydrocarbons and PAH-related DNA adducts. J Appl Genet. 2017; 58(3): 321-30.

2. Moorthy B., Chu C., Carlin D.J. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci. 2015; 145(1): 5-15.

3. Shimada T., Yamazaki H., Mimura M., Inui Y., Guengerich F.P. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther. 1994; 270(1): 414-23.

4. Koblyakov V.A. Inductors of the cytochrome P-450 superfamily as promoters of carcinogenesis. Biochimiya. 1998; 63(8): 1043-58. (in Russian)

5. Niida H., Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis. 2006; 21(1): 3-9.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3