The impact of systemic homeostatic regulator — associates of peroxide anion radicals on the activity of microorganisms

Author:

Iksanova Tatiana I.1ORCID,Stekhin Anatoly A.2ORCID,Yakovleva Galina V.2ORCID,Kamenetskaya Darya B.1ORCID,Mikhailova Rufina I.1ORCID,Zagainova Angelika V.1ORCID

Affiliation:

1. Center for Strategic Planning and Management of Biomedical Health Risk of Federal Medical Biological Agency

2. National Medical Research Center for Rehabilitation and Balneology of the Ministry of Health of the Russian Federation

Abstract

Introduction. This work is devoted to the study of the effect of peroxide anion radicals in submicromol concentrations and the structural organization of the associated water phase in drinking waters, activated by physical methods on the viability of a number of microorganisms in the human gastrointestinal tract. Materials and methods. Studies were carried out using standard methods of microbiological analysis of drinking water on microorganisms of Escherichia coli 1257, Pseudomonas aeruginosa, Salmonella enteritidis 5765, Enterococcus faecalis ATCC 29212, Klebsiela pneumoniae subsp. pneumoniae ATCC 700603, Citrobacter freundii 101/57. Evaluation of changes in the physical parameters of water before and after treatment with the studied technologies was carried out using electrophysical and physical-chemical parameters (hydrogen index, redox potential, content of peroxide anion radical); structural and energy indicators (by the share of the associated water phase and the density of its distribution by energy levels). Results. The data obtained indicate the strongest stabilizing effect on the viability of microorganisms implementing ATP-phase energy metabolism to be µexerted by associates of peroxide anion radicals controlling metabolic processes and providing an extra-substrate channel for maintaining the energy function of microorganisms. We assume that catalytically active waters have a systemic regulatory effect, ensuring the maintenance of homeostasis of microorganisms. Similar regulation is also possible in the intestinal microbiota of the body to maintain or suppress the activity of competing microorganisms when a person uses biocatalytically active (in the range of concentrations of peroxide anion radicals in drinking water from 0.1 to 40 drinking water µg/L) drinking water. We assume that this will solve a number of issues related to the etiology and pathophysiology of a number of gastroenterological diseases caused by changes in the electrophysical state of the internal environment of the gastrointestinal tract, promoting the emergence and development of a competing, adapted to an environment with low electron-donor capacity, bacterial microbiota. Limitations. The data obtained as a result of the experiment on biota similar to the human intestinal microbiota are of scientific interest and research involving warm-blooded animals is necessary to continue work in this direction. Conclusion. Physically treated waters affect the growth or inhibition of intestinal biota colonies, which may be associated with the controlling role of peroxide anion radicals on intracellular metabolic processes in microorganisms

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

Reference16 articles.

1. Kurmangulov A.A., Dorodneva E.F., Isakova D.N. Functional activity of intestinal microbiota with metabolic syndrome. Ozhirenie i metabolizm. 2016; 13(1): 16–9. https://doi.org/10.14341/omet2016116-19. (in Russian)

2. Lyte M. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLoS Pathog. 2013; 9(11): e1003726. https://doi.org/10.1371/journal.ppat.1003726

3. Stekhin A.A., Yakovleva G.V., Iksanova T.I., Pronko K.N., Zemskov V.M. Evoluation of the effect of structural-physical changes in water on biological activity. Clin. Pract. 2018; 15(5): 861–71. https://doi.org/10.4172/clinical-practice.1000419

4. Rakhmanin Yu.A., Stekhin A.A., Yakovleva G.V. Water Biophysics: Quantum Nonlocality in Water Treatment Technologies; Regulatory Role of Associated Water in Cellular Metabolism; Regulation of Bioenergetic Activity of Drinking Water [Biofizika vody: Kvantovaya nelokal’nost’ v tekhnologiyakh vodopodgotovki; regulyatornaya rol’ assotsiirovannoy vody v kletochnom metabolizme; normirovanie bioenergeticheskoy aktivnosti pit’evoy vody]. Moscow: LENAND; 2016. (in Russian)

5. Kulagin M.V., Yakovleva G.V., Stekhin A.A., Gukasov V.M., Shovkoplyas Yu.A. Parameterization of the associated water phase using high performance liquid chromatography. Meditsina i vysokie tekhnologii. 2018; (4): 33–43. (in Russian)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3