Evaluation of the impact of industrial single-walled and multi-walled carbon nanotubes on human respiratory tract epithelial cells

Author:

Gabidinova G. F.1ORCID,Timerbulatova G. A.2ORCID,Daminova A. G.3ORCID,Galyaltdinov Sh. F.3ORCID,Dimiev A. M.3ORCID,Kryuchkova M. A.3ORCID,Fakhrullin R. F.3ORCID,Fatkhutdinova L. M.1ORCID

Affiliation:

1. Kazan State Medical University

2. Kazan State Medical University; Center of Hygiene and Epidemiology in the Republic of Tatarstan

3. Kazan Federal University

Abstract

Introduction. In the present study, a comparative assessment of the toxic effects of industrial single-walled and multi-walled carbon nanotubes (SWCNT and MWCNT) at doses corresponding to industrial exposures on BEAS-2B and A549 cells was carried out. Materials and methods. The size distribution of SWCNT and MWCNT agglomerates in dispersions was estimated by dynamic light scattering and transmission electron microscopy. Cytotoxicity was assessed using a MTS test and LDH assay. The interaction of CNTs with cells was visualized using dark-field and transmission electron microscopy. Results. Cytotoxic effects of pristine SWCNT and MWCNT in concentrations of 50-200 μg/ml and purified SWCNT in the range of 25-200 μg/ml were found in BEAS-2B cells. SWCNT and MWCNT were found to penetrate into the cytoplasm of both BEAS-2B and A549 cells, while MWCNT are more often revealed in the intracellular content as vacuolized clusters, and single SWCNT and agglomerates are visualized in the cytoplasm without a tendency to vacuolization. Limitations. CNT were introduced into cells in the form of dispersions, where both single nanotubes and their agglomerates were found. The calculation of CNT concentrations for introduction into cells was based on computer simulation. Conclusion. Further study of the mechanisms of cytotoxic and genotoxic effects of different types of carbon nanotubes (CNT) may contribute to the identification of MWCNT and SWCNT specific effects on the cells of the respiratory system to develop methodological approaches to the safe use of CNT.

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3