Heavy metals and arsenic in drinking water and health risk assessment of the region with the developed mining industry

Author:

Babayan Gayane H.1ORCID,Sakoyan Astghik G.1

Affiliation:

1. Center for Ecological-Noosphere Studies NAS RA

Abstract

Introduction. Drinking water intended for South Armenia’s towns and rural communities is abstracted from minor mountain rivers belonging to the basins of the Voghchi and Meghri, the water of which is treated at five water treatment plants. The river basins are home to the major copper molybdenum and gold ore mining centers of the republic.The purpose of this research was to study heavy metals Ag, Al, As, Cd, Cu, Fe, Mo, Ni, Pb, Sn, Sb, Se, Zn, Hg, Te in centralized drinking water supply systems and assess drinking water-caused health risks to the population.Material and methods. In 2016-2017 from 43 sampling sites a total of 53 basic water samples were taken, including 14- from surface water supply sources, 16 - from water treatment plants, 33- from water supply networks. Heavy metals were determined by the atomic absorption method. To assess the quality of water on water abstraction sites relevant ecological (regional) norms and national and international standards were used. The risk of development of noncarcinogenic and carcinogenic effects was assessed in the case of oral intake of and dermal exposure to tap water.Results. On water abstraction sites, background regional levels of surface waters exceeded the concentration of aluminum, iron, molybdenum, tin, antimony (by as 13.3-1.1 times). Water treatment efficiency at water treatment plants is estimated at 12% - 69% depending on different metals. Concentrations of heavy metals in drinking water do not exceed the norms. The risk of development of noncarcinogenic effects in the population at chronic exposure to drinking water is insignificant (HI<1), whereas a total carcinogenic risk exceeds a safety limit for arsenic (CR=9.59×10–5).Conclusion. The acceptable quality of drinking water supplied to consumers is not yet an index of sustainable and safe water supply in the studied region because of a water pollution level on intake sites, obsolete water treatment technologies, poor sanitation and technical condition of plants and water networks.

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

Reference27 articles.

1. Babayan G.H., Aghababyan K.A. Present-day ecological state of water objects of the Republic of Armenia. Water Res. 2008; 35(2): 234–9.

2. «Armvodokanal». Water supply and sanitation: Annual reports (2005–2016). Erevan; 2017. (in Armenian)

3. Aloyan P.G. Geology of Armenia’s mining regions. Erevan; 2001. (in Armenian)

4. Statistical Committee of the Republic of Armenia. Report of the National Statistical Agency. Environment and Natural Resources in the Republic of Armenia for 2008–2016. Available at: http://armstat.am (in Armenian)

5. Sagatelyan A.K. Features of the Distribution of Heavy Metals in Armenia. Erevan; 2004. (in Armenian)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3