Analysis of MT1 and ZIP1 gene expression in the liver of rats with chronic poisoning with cadmium chloride

Author:

Ziatdinova Munira M.1ORCID,Valova Yana V.1ORCID,Mukhammadiyeva Guzel F.1ORCID,Fazlieva Anna S.1ORCID,Karimov Denis D.1ORCID,Kudoyarov Eldar R.1ORCID

Affiliation:

1. Ufa Research Institute of Occupational Health and Human Ecology

Abstract

Introduction. Cadmium is a toxic heavy metal with devastating effects on most organ systems. After absorption, cadmium is transported throughout the body, primarily by binding to proteins by metallothioneins. It is believed that the mechanisms of cadmium-induced transformation arise due to the disruption of zinc-dependent cellular processes. This part is due to the structural and physical similarities between zinc and cadmium. More than half of the incoming cadmium is deposited in the liver and kidneys. The rest part is distributed throughout other organs and their systems. Materials and methods. In total, 40 white outbred rats of both sexes weighing 170-230 g were used in the experiment; they were formed into four experimental groups of 10 animals each, depending on the dose of the injected toxicant. Liver tissue samples were used as research materials, in the homogenate of which the quantitative content of Cd and Zn was determined, as well as the mRNA level of the MT1 and ZIP1 genes. Results. It was found that the most pronounced activity of the MT1 gene in liver tissues was achieved when animals were administered cadmium chloride at a dose of 0.1 mg/kg (2.69 ± 0.37; p = 0.017), while the multiplicity of expression of the ZIP1 gene showed the maximum value of the level of transcripts with the minimum dose of toxin (2.70 ± 0.37; p = 0.007). It was also revealed that the highest concentration of zinc in the liver tissue was observed with the introduction of cadmium chloride at a dose of 0.1 mg/kg (33.84 ± 0.53; p <0.001), and the concentration of cadmium increased along with an increase in the dose of the toxicant (0, 0049 ± 0.0003; 0.0203 ± 0.0024; 0.664 ± 0.007; 0.76 ± 0.0089). Conclusion. Thus, a comprehensive study of the expression of genes for metallothioneins and zinc transporters can be used as a biomarker of poisoning with cadmium and its compounds.

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3