Testing the possibility of using desiccators to study the aerosol effect of liquid deicing material

Author:

Ushakova Olga V.1ORCID,Evseeva Irina S.1ORCID,Tribis Lev I.1ORCID,Sbitnev Anton V.1ORCID,Vodyanova Mariya A.1ORCID

Affiliation:

1. Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency

Abstract

Introduction. In many countries, there is an additional group of pollutants - deicing materials (DIM) in winter. Salt-containing DIM is one of the factors for increasing the content of PM2.5 and PM10 in the air. The purpose was to determine the possibility of using desiccators to study the aerosol effect of liquid deicing material, identify the chemical composition in the air at spreading liquid DIM in various ways, and establish the calculated doses for conducting a toxicological experiment to study the DIM aerosol effect on the organism of warm-blooded animals. Materials and methods. A model experiment was conducted in airtight containers (desiccators) using a liquid DIM that includes NaCl and CaCl2. All chemical compounds were captured in air pumping from the desiccator into a bubbler tank with bidistilled water and then analyzed using ion chromatography. Results. When comparing the obtained results of main DIM components contained in the air inside desiccators with the maximum permissible concentrations, the excess of Cl- was detected both for the highest single concentration of 0.1 mg/m3 and for the average daily concentration of 0.03 mg/m3. When applying DIM at a dose exceeding ten times the recommended norms for liquid the DIM, an excess level of the maximum permissible concentration for chlorine (but not for sodium and calcium) is observed. Conclusion. The method of DIM studying in desiccators is indicative in terms of the choice of concentrations and studying mechanisms of reagent intake for subsequent DIM research conduction using laboratory animals.

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3