Investigation of changes in rat’s blood metabolomic profile, caused by lead exposure

Author:

Chemezov Aleksey I.1ORCID,Sutunkova Marina P.1ORCID,Ryabova Julija V.1ORCID

Affiliation:

1. Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Abstract

Introduction. The prevalence of lead in the environment, due to human production and economic activities, and the xenobiotic nature of the element substantiate the relevance of studying the changes caused by the action of this metal. Materials and methods. A non-target metabolomic screening of the blood of rats exposed to intraperitoneal administration of lead acetate by HPLC-mass spectrometry was carried out. The expression of the selected masses was compared with those for the control group of animals. The masses that significantly changed the intensity compared to the control were subjected to fragmentation to obtain characteristic fragments. The annotation of metabolites was performed by searching in MS/MS databases and by comparison with in silico fragmentation spectra. The involvement of annotated metabolites in metabolic processes was established by literature analyzing. Results. Non-target metabolomic screening revealed 37 m/z values for the exposed group, significantly changing the intensity compared to the control. Annotation using fragmentation spectra and in silico fragmentation allows establishing the structure of eight metabolites, including an epoxy derivative of linolic acid, 15-hydroxyeicosatetraenoic acid, four oxo- and hydroxyacylcarnitine derivatives of long-chain fatty acids, one acylcarnitine derivatives of medium-chain fatty acids and one lysophosphoserine. Conclusion. Analyzing the literature, the known functions of the identified metabolites were established and attributed to the known metabolic processes. So, oxo- and hydroxyacylcarnitines are derivatives for intermediate products of β-oxidation fatty acids - it is increased concentration compared to the control indicates a violation of this process under the influence of oxidative stress caused by lead. Epoxy and 15-hydroxy derivatives of fatty acids (increased content relative to the control group) act as regulatory metabolites (vasodynamic activity), on the one hand, and markers of lead-induced hypoxia on the other hand. The increase of the concentration for the lysophosphatidylserine derivative indicates the intensification of apoptotic processes in the organism of the exposed group in contrast to the control.

Publisher

Federal Scientific Center for Hygiene F.F.Erisman

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3