On radial solutions for some elliptic equations involving operators with unbounded coefficients in exterior domains

Author:

De Araujo Anderson L. A.ORCID,Faria Luiz F.O.ORCID,Alarcón SalomónORCID,Iturriaga LeoneloORCID

Abstract

We study existence and multiplicity of radial solutions for some quasilinear elliptic problems involving the operator $L_N=\Delta - x\cdot \nabla$ on $\mathbb{R}^N\setminus B_1$, where $\Delta$ is the Laplacian, $x\cdot \nabla$ is an unbounded drift term, $N\geq 3$ and $B_1$ is the unit ball centered at the origin. We consider: (i) Eigenvalue problems, and (ii) Problems involving a nonlinearity of concave and convex type. On the first class of problems we get a compact embedding result, whereas on the second, we address the well-known question of Ambrosetti, Brezis and Cerami from 1993 concerning the existence of two positive solutions for some problems involving the supercritical Sobolev exponent in symmetric domains for the Laplacian. Specifically, we provide\linebreak a new approach of answering the ABC-question for elliptic problems with unbounded coefficients in exterior domains and we find asymptotic properties of the radial solutions. Furthermore, we study the limit case, namely when nonlinearity involves a sublinear term and a linear term. As far as we know, this is the first work that deals with such a case, even for the Laplacian. In our approach, we use both topological and variational arguments.

Publisher

Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3