Abstract
We establish a variant for spheres of results obtained in \cite{HK}, \cite{BBK} for affine space. The principal result, that, if $m$ is a power of $2$ and $k\geq 1$, then $km$ continuous densities on the unit sphere in $\mathbb R^{m+1}$ may be simultaneously bisected by a set of at most $k$ hyperplanes through the origin, is essentially equivalent to the main theorem of Hubard and Karasev in \cite{HK}. But the methods used, involving Euler classes of vector bundles over symmetric powers of real projective spaces and an `orbifold' fixed point theorem for involutions, are substantially different from those in \cite{HK}, \cite{BBK}.
Publisher
Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University
Subject
Applied Mathematics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. More Bisections by Hyperplane Arrangements;Discrete & Computational Geometry;2021-11-17