Hilbert and Poincaré problems for semi-linear equations in rectifiable domains

Author:

Ryazanov Vladimir

Abstract

The study of the boundary value problem with arbitrary measurable data originated in the dissertation of Luzin where he investigated the Dirichlet problem for harmonic functions in the unit disk. Recently, in \cite{R7}, we studied the Hilbert, Poincaré and Neumann boundary value problems with arbitrary measurable data for generalized analytic and generalized harmonic functions and provided applications to relevant problems in mathematical physics. The present paper is devoted to the study of the boundary value problem with arbitrary measurable boundary data in a domain with rectifiable boundary corresponding to semi-linear equation with suitable nonlinear source. We construct a completely continuous operator and generate nonclassical solutions to the Hilbert and Poincaré boundary value problems with arbitrary measurable data for Vekua type and Poisson equations, respectively. Based on that, we prove the existence of solutions of the Hilbert boundary value problem for the nonlinear Vekua type equation with arbitrary measurable data in a domain with rectifiable boundary. It is necessary to point out that our approach differs from the classical variational approach in PDE as it is based on the geometric interpretation of boundary values as angular (along non-tangential paths) limits. The latter makes it possible to also obtain a theorem on the boundary value problem for directional derivatives, and, in particular, of the Neumann problem with arbitrary measurable data for the Poisson equation with nonlinear sources in any Jordan domain with rectifiable boundary. As a result we arrive at applications to some problems of mathematical physics.

Publisher

Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University

Subject

Applied Mathematics,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3