Game Semantics, Quantifiers and Logical Omniscience

Author:

Ramos Mendonça Bruno

Abstract

Logical omniscience states that the knowledge set of ordinary rational agents is closed for its logical consequences. Although epistemic logicians in general judge this principle unrealistic, there is no consensus on how it should be restrained. The challenge is conceptual: we must find adequate criteria for separating obvious logical consequences (consequences for which epistemic closure certainly holds) from non-obvious ones. Non-classical game-theoretic semantics has been employed in this discussion with relative success. On the one hand, with urn semantics [15], an expressive fragment of classical game semantics that weakens the dependence relations between quantifiers occurring in a formula, we can formalize, for a broad array of examples, epistemic scenarios in which an individual ignores the validity of some first-order sentence. On the other hand, urn semantics offers a disproportionate restriction of logical omniscience. Therefore, an improvement of this system is needed to obtain a better solution of the problem. In this paper, I argue that our linguistic competence in using quantifiers requires a sort of basic hypothetical logical knowledge that can be formulated as follows: when inquiring after the truth-value of ∀xφ, an individual might be unaware of all substitutional instances this sentence accepts, but at least she must know that, if an element a is given, then ∀xφ holds only if φ(x/a) is true. This thesis accepts game-theoretic formalization in terms of a refinement of urn semantics. I maintain that the system so obtained (US+) affords an improved solution of the logical omniscience problem. To do this, I characterize first-order theoremhood in US+. As a consequence of this result, we will see that the ideal reasoner depicted by US+ only knows the validity of first-order formulas whose Herbrand witnesses can be trivially found, a fact that provides strong evidence that our refinement of urn semantics captures a relevant sense of logical obviousness.

Publisher

Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University

Subject

Philosophy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3