Abstract
In this article, our aim is to take a step towards a full understanding of the notion of paraconsistency in the context of metainferential logics. Following the work initiated by Barrio et al. [2018], we will consider a metainferential logic to be paraconsistent whenever the metainferential version of Explosion (or meta-Explosion) is invalid. However, our contribution consists in modifying the definition of meta-Explosion by extending the standard framework and introducing a negation for inferences and metainferences. From this new perspective, Tarskian paraconsistent logics such as LP will not turn out to be metainferentially paraconsistent, in contrast to, for instance, non-transitive logics like ST. Finally, we will end up by defining a logic which is metainferentially paraconsistent at every level, and discussing whether this logic is uniform through translations.
Publisher
Uniwersytet Mikolaja Kopernika/Nicolaus Copernicus University
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献